Tag Archive: Sea star wasting syndrome


Giant pink sea star in final stages of sea star wasting syndrome. Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Giant pink sea star in final stages of sea star wasting syndrome. Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

[Update May 4th, 2014: Article in the Vancouver Sun - No definitive cause stated yet but preliminary research suggests a virus is involved with secondary infections by bacteria and that stress likely also plays a role. See Vancouver Sun; May 4, 2014; "Scientists narrow in on Sea Star Wasting Syndrome devastating the West Coast."]

Deepest of sighs.

I am very sad to report that Sea Star Wasting Syndrome is now on NE Vancouver Island.

I first detected symptoms of the Syndrome at Bear Cove in Port Hardy on December 13th. Please see table at the end of this blog for how the species affected appears to be quite different from further to the south. Leather stars seem particularly affected and the Syndrome appears to advance much more slowly.

Leather star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Leather star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

I have tried to think up a terrestrial analogy for what is happening to the sea stars so that non-divers might better get a sense of the weight and ecosystem importance of it. However, I can’t come up with a good terrestrial equivalent of an abundant group of highly visible, apex predators. My best attempt is to suggest you think of sea stars like birds of prey. Imagine what you would feel like if you were to notice they were dying, bodies deflating . . . then melting away and that this would progress very quickly and spread like wildfire.

Mottled star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Mottled star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Please see my previous blog item, “Wasted, What is Happening to the Sea Stars of the NE Pacific Ocean?”, for great detail on the symptoms, species impacted further to the south, spread of the Syndrome, and how to help understand what is happening by relaying data to the Vancouver Aquarium. 

The short of it is:

  • The meltdown of sea stars was first detected in June 2013 in Washington State in ochre stars and in sunflower stars in Howe Sound (BC) in late August 2013 but has now been reported at sites from Alaska to the Mexican border.
  • Sunflower star in distress - potentially wasting syndrome. (Click to enlarge.) Photo from a week ago. Bear Cove, Port Hardy; December 13, 2013. © 2013 Jackie Hildering

    Sunflower star in distress – potentially wasting syndrome. (Click to enlarge.) Photo from a week ago. Bear Cove, Port Hardy; December 13, 2013.
    © 2013 Jackie Hildering

    The number of sea stars impacted is orders of magnitude greater than any previous known outbreak.

  • Most likely due to a pathogen (virus and or/bacteria). Cornell University is doing the genomic work. Toxins and environmental conditions have not been ruled out as the cause (or compounding factors).
  • If it is a pathogen, how quickly it spreads is influenced by the number of animals and if they are stressed. There are likely to be layers of stressors.
  • It has put forward by the scientific community that this could be a normal mechanism for overpopulation in sea stars.

The 1-minute time-lapse video below shows the progression of the Syndrome in a sunflower star over 7 hours.

Yep, it’s terrible.

However, I believe very strongly that, in attempting to raise awareness about marine environmental issues, I must always reflect on “what you can do”. If I do not, I contribute to the spread of a devastating human syndrome: Eco-paralysis. Symptoms include people becoming despondent, overwhelmed, and underactive in undertaking positive socio-environmental change, and often saying “It’s all hopeless”. The cause? This I do know. Eco-paralysis is the result of not seeing the common solutions between environmental problems.

Sea Star Wasting Syndrome is a solid indicator of how little we know about our life-sustaining oceans. It emphasizes the importance of humility and precaution in decision-making around the environment and how we are all empowered to reduce environmental stressors (with emphasis on reducing fossil fuel consumption and chemical use).

Having witnessed what I have over the last many weeks, I am all the more driven to assist others in (1) falling deeper in love with the NE Pacific Ocean by revealing the beauty below her surface and (2) feeling the joy that comes from creating change that is better for the environment and, therefore, ourselves.

What was once a sunflower star. (Click to enlarge). Bear Cove, Port Hardy; December 23, 2013. © 2013 Jackie Hildering

What was once a sunflower star. (Click to enlarge). Bear Cove, Port Hardy; December 23, 2013.
© 2013 Jackie Hildering

The progression of the Syndrome in 2 days in a giant pink star. (Click to enlarge.)© 2013 Jackie Hildering

The progression of the Syndrome in 2 days in a giant pink star. (Click to enlarge.)© 2013 Jackie Hildering

Table showing progression of SSWS at Bear Cove

Table showing a summary of my data re. progression of species impacted at Bear Cove, Port Hardy. Progression of symptoms in a leather star over 16 days at Bear Cove, Port Hardy. (Click to enlarge.) © 2014 Jackie Hildering

Progression of symptoms in a leather star over 16 days at Bear Cove, Port Hardy. (Click to enlarge.)© 2014 Jackie Hildering

Progression of symptoms in a leather star over 16 days at Bear Cove, Port Hardy. (Click to enlarge.)© 2014 Jackie Hildering

Sunflower star with sea star wasting syndrome. Photo -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Sunflower star with sea star wasting syndrome. Tissue wastes away. Legs often break off and crawl away briefly before rotting away. Photo – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

[Update May 4th, 2014: Article in the Vancouver Sun - No definitive cause stated yet but preliminary research suggests a virus is involved with secondary infections by bacteria and that stress likely also plays a role. See Vancouver Sun; May 4, 2014; "Scientists narrow in on Sea Star Wasting Syndrome devastating the West Coast."]

There has already been much reporting on the gruesome epidemic spreading like wildfire through several species of sea star in the NE Pacific Ocean.

“Sea star wasting syndrome” is incredibly virulent and is causing the mass mortality of some sea star species in British Columbia and beyond. “Sea stars go from “appearing normal” to becoming a pile of white bacteria and scattered skeletal bits is only a matter of a couple of weeks, possibly less than that” (Source #1).

Rotting pile of sunflower stars. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Rotting pile of sunflower stars. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

What I have strived to do below is bundle the state of knowledge so far, relying heavily on the expertise of two extraordinary divers and marine naturalists: (1) Neil McDaniel, marine zoologist and underwater photographer / videographer who maintains a website on local sea stars and has put together A Field Guide to Sea Stars of the Pacific Northwestand (2) Andy Lamb, whose books include Marine Life of the Pacific Northwest.

I am hoping that kayakers, beach-walkers and fellow divers will help monitor and report on the spread of the disease via this link on the Vancouver Aquarium webpage but I am also hoping that all of us may learn from this tragedy that has impacted “one of the most iconic animals on the coast of British Columbia . . . more abundant and diverse in our waters than anywhere else in the world” (Source #3).

Sea star wasting syndrome reminds us of the fragility of ocean ecosystems; how very quickly disease could spread in the ocean; and how we are all empowered to reduce stressors that increase the likelihood of pathogens manifesting as disease or even that pathogens enter the environment (e.g. sewage).

Update January 18, 2014 – Video by Neil McDaniel showing the extent of the mortality in some parts of southern British Columbia.  Click here. 

Species impacted? (Update November 30th – Source #14)

High mortalities (note that the first 4 are members of the same family – the Asteriidae):

  1. Sunflower star (Pycnopodia helianthoideshardest hit in southern British Columbia. From communication with Neil McDaniel ” . . .so far I estimate it has killed tens, possibly hundreds of thousands of Pycnopodia in British Columbia waters.”
  2. Mottled star (Evasterias troschelii
  3. Giant pink star (Pisaster brevispinus)
  4. Ochre star aka purple star (Pisaster ochraceus)
  5. Morning sun star (Solaster dawsoni)

More limited mortalities:

  1. Vermillion star (Mediaster aequalis); video of an afflicted star here.
  2. Rainbow star (Orthasterias koehleri)
  3. Leather star (Dermasterias imbricata)
  4. Striped sun star (Solaster stimpsoni)
  5. Six-rayed stars (Leptasterias sp.)

Update January 21st, 2014: Possibly: Rose star (Crossaster papposus) – I have noted symptoms in this species on NE Vancouver Island as has Neil McDaniel in S. British Columbia).

Update November 20th: The Vancouver Aquarium reports on which sea stars are and are not affected in S. British Columbia: “The majority of those species affected by the sunflower star epidemic are members of the same sea star family” and that the closely related morning sun star and giant pink star appear to get infected after feeding these “meals”.  (Source #10, includes video).

Symptoms and progression of the syndrome:

Neil McDaniel shared the following 7 images for the progression of the disease in sunflower stars [Source #2 and #14]. See the end of this blog item for images showing symptoms in other sea star species as well as a 1 minute time-lapse clip showing the progression of the syndrome in a sunflower star over 7 hours. [Note that the progression of the Syndrome on NE Vancouver Island appears that it may be different from what has been observed further to the south.]

1. In this image most of the sunflower stars appear healthy “other than one just right of center frame is exhibiting the syndrome, looking “thinned-out” and emaciated.”

Click to enlarge. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Click to enlarge. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

2. This images “shows this thinning in close-up. Note how distinct the edges of the rays look and how flat the star is.”

Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Click to enlarge. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

3. This image “shows how the body wall begins to rupture, allowing the gonads and pyloric caeca to spill out.” 

As the animals become more stressed, they often drop several rays (which wander off on their own for a while). At this point the body wall becomes compromised and the pyloric caeca and/or gonads may protrude through lesions. As things progress, the animals lose the ability to crawl and may even tumble down steep slopes and end up in pile at the bottom. Soon after they die and begin to rot

Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

4. This image “shows the gonads breaking through holes in the body wall. At this point rays often break off and crawl away briefly.”

Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

5. As things progress, the animals lose the ability to crawl [and hold grip surfaces] and may even tumble down steep slopes and end up in pile at the bottom. Soon after they die and begin to rot.

Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

6. The bacteria Beggiatoa then takes over and consumes all of the organic matter, leaving a scattering of skeletal plates on the bottom. The syndrome develops quickly and in only one to two weeks animals can go from appearing healthy to a white mat of bacteria and skeletal plates

Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

7. This image “shows an individual star that is being consumed by mat bacteria.”

Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

The 1-minute time-lapse video below shows the progression of the Syndrome in a sunflower star over 7 hours.

Cause(s)?
To date (January 2014), the cause (s) have not yet been identified. Scientific opinion appears to be that most likely the cause is one or more viruses or bacteria that have not yet been identified (more advanced investigations like DNA sequencing and metagenomics are now underway at Cornell University – Source #18 and #19) but toxins and environmental factors have not been ruled out as the primary cause or confounding causes (Source #18). As with any pathogen (like the flu virus), the expression of a pathogen as disease is influenced by number and proximity of individuals and could be exacerbated by environmental stressors. It is NOT radiation [Source #18, #19 and others].

Using cutting-edge DNA sequencing and metagenomics, Hewson is analyzing the samples for viruses as well as bacteria and other protozoa in order to pinpoint the infectious agent among countless possibilities.

“It’s like the matrix,” Hewson said. “We have to be very careful that we’re not identifying something that’s associated with the disease but not the cause.”

    • ”In previous outbreaks the “proximal cause” was found to a vibrio bacterium but “a recent wasting event on the east coast of the United States has been attributed to a virus  . . . such events are often associated with warmer than typical water temperatures . . . Please note that we do not know what is causing Sea Star Wasting Syndrome, and the cause may be different in different regions  . . .  the period prior to Wasting was characterized by warm water temperatures” (University of California Santa Cruz, Source #4).
    • Bates et al reported on an outbreak of wasting syndrome in ochre stars in Barkley sound in 2008. This included conducting lab experiments finding that the “prevalence and infection intensity were always higher in warm temperature treatments” and that “small increases in temperature could drive mass mortalities of Pisaster [ochre stars] due to wasting disease.” [Source #13 and #14]
    • “Do not believe this is related to a warming trend” (Source #18).
    • “Overpopulation” of sunflower stars appears to be a factor with outbreaks occurring where there is a high abundance of sea stars. “Often when you have a population explosion of any species you end up with a disease outbreak” (Source #5). “This could be perfectly normal as a way to control overpopulation” (Source #18).
    • “Some initial samples sent to DFO [Department of Fisheries and Oceans] and UBC [University of British Columbia] have not isolated a specific causative agent for this sea star die off. More samples are being collected and additional tests will be conducted” (Source #2 and #7). Viruses are notoriously difficult to detect. Cornell University (New York) has begun viral and bacterial culturing (Source #8). Updates will be provided here as they become available. See Source #14 for the results of pathology reports from October 4, November 12 and November 13.
    • Quote from Drew Harvell, a Cornell University professor of ecology and evolutionary biology who studies marine diseases: “these kinds of events are sentinels of change. When you get an event like this, I think everybody will say it’s an extreme event and it’s pretty important to figure out what’s going on . . . Not knowing is scary . . . If a similar thing were happening to humans, the Centers for Disease Control and Prevention would commit an army of doctors and scientists to unraveling the mystery.” (Source #12)
    • Fukushima is a contributing factor?! There is no data to date to support this and, while of course radiation benefits nothing, I worry that pointing the finger away from ourselves takes away from the opportunity to recognize and act on how we all contribute to ocean stressors such as increasing temperature. From Source #19 – “scientists see Fukushima as an unlikely culprit because the die-offs are patchy, popping up in certain places like Seattle and Santa Barbara and not in others, such as coastal Oregon, where wasting has only been reported at one location.”
    • Ballast water? “From Source #19- “Others have wondered if a pathogen from the other side of the world may have hitched a ride in the ballast water of ocean-going ships. Scientists say this fits with the fact that many of the hot spots have appeared along major shipping routes. However, the starfish in quiet Monterey Bay, Calif. have been hit hard, whereas San Francisco’s starfish are holding strong.”

Range and timeline?

  • [Update December 21, 2013 - The Syndrome has been documented in sites from Alaska to the Mexican Border - with gaps in knowledge especially off central and northern BC. See data acquired through the University of California, Santa Cruz on this map (Source #4) and the data acquired through the Vancouver Aquarium on this map (Source #3).]
  • June 2013 – First noted in the intertidal zone in ochre stars along the Washington Coast. “As of  December, signs of wasting had been observed at 45 of 84 MARINe sites [USA - Multi-Agency Rocky Intertidal Network] sampled since summer 2013, spanning the entire coast from Alaska to San Diego but varying in intensity from low levels of infection to mass mortality” [and with large gaps in data especially in northern British Columbia]. (Source #17). See map (Source #4) documenting the Syndrome in ochre stars in some locations from Alaska to the Mexican Border.
  • Late August 2013 – first reported in the sub-tidal in Howe Sound (Whytecliff and Kelvin Grove) by recreational diver Jonathan Martin (his photos here; video here). Sunflower stars were the main species impacted.
  • Mass mortality noted in Indian Arm in early October. “By late October the syndrome had been reported from the Gulf Islands, around Nanaimo and into Puget Sound and the San Juan Islands. It appears to be spreading throughout the entire Strait of Georgia and Puget Sound.” [Source #14].
  • First detected in the sub-tidal in sunflower stars in Washington State as of late October (Source #11 and #17). See a video here of a site in West Seattle before and after the outbreak. Update December 22nd: First reported off Whidbey Island, Washington.
  • Update December 21st: I am very sad to report that I have now found afflicted animals on NE Vancouver Island (Bear Cove, Port Hardy). Please see my blog at this link for photos, details and updates on the progression of the Syndrome on NE Vancouver Island].
  • Update January 19th, 2014: Morning sunstar with symptoms found in Campbell River [Reported by Dylan Smith].
  • No outbreaks on the west coast of Vancouver Island [Source #14].
  • “A smaller and isolated Atlantic outbreak, at points off Rhode Island and Maine, has also been noted.” (Source #12).
  • With regard to finding sunflower stars with the syndrome in Sechelt Inlet “This sighting is both disturbing and perplexing for a couple of reasons. First, Sechelt Inlet is hydrographically quite isolated from the rest of the Strait of Georgia, being a nearly land-locked fjord with minimal water exchange through Sechelt Rapids. Secondly [in Sechelt Inlet] Pycnopodia is a common sea star, but by no means abundant and certainly not found in anything near the incredible densities (up to 11/square metre) that we have encountered at the Defence Islands in Howe Sound” (Source #1). Jeff Marliave (VP of Marine Sciences at the Vancouver Aquarium) relates that the epicentre of the outbreak in Sechelt Inlet appears to be Egmont and that this correlates with a high abundance of sunflower stars there (Source #8).
  • Baby sea stars now seem to be coming back to areas where adult sunflower stars have been wiped out (Source #18).
  • You can aid understanding of the range and spread by inputting your data at this link on the Vancouver Aquarium webpage.

Has this happened before?
Never to this large a scale. “Although similar sea star wasting events have occurred previously, a mortality event of this magnitude, with such broad geographic reach has never before been documented.” (Source #17).

  • “Southern California in 1983-1984 and again (on a lesser scale) in 1997-98″ (Source #4 and #13)
  • Florida (Source #5).
  • Update November 30: Sunflower die offs [on much smaller scale] have been noted in the past in Barkley Sound. In 2008 ochre star die offs were documented in Barkley Sound. In 2009 Bates et. al. reported on this and observed that the prevalence of disease “was highly temperature sensitive and that populations in sheltered bays appeared to sustain chronic, low levels of infection.” (Source #14 and #15).
  • “Similar events have occurred elsewhere over the last 30 years. Sea stars have perished in alarming numbers in Mexico, California and other localities” (Source #2).
  • “In July, researchers at the University of Rhode Island reported that sea stars were dying in a similar way from New Jersey to Maine .  . a graduate student collected starfish for a research project and then watched as they “appeared to melt” in her tank” (Source #5).

Ecosystem impact?

The impacted sea star species are carnivores, feeding high up in the food chain. This massive die off may lead to shifts / changes in marine ecosystems since there will be less predation by the affected sea star species (Source #9 and #12). Their prey includes: bivalves like mussels, marine snails, urchins and sea cucumbers.

    • “Once that disease is in the environment, it can be difficult to get the population [of the affected sea stars] back” (Source #5).
    • Ecologists consider sunflower and ochre stars to be keystone speices because they have a disproportionately large influence on the distribution and abundance of many other species. Scientists anticipate that such a large mortality event in keystone species could change the intertidal and sub tidal seascapes . . . Previous examples of large-scale, mass mortality of individual marine species have resulted in dramatic ecosystem-wide changes” (Source #17).
    • “Sea stars are voracious predators, like lions on the seafloor. They gobble up mussels, clams, sea cucumbers, crab and even other starfish. That’s why they’re called a keystone species, meaning they have a disproportionate impact on an ecosystem, shaping the biodiversity of the seascape. “These are ecologically important species,”  . . . “To remove them changes the entire dynamics of the marine ecosystem. When you lose this many sea stars it will certainly change the seascape underneath our waters.” (Source #19)
    • Seeing baby sunflower stars back where adults have been wiped out in Howe Sound. Getting species like agarum kelp back (good habitat that was suppressed due to previous abundance of sea stars) but also seeing green urchins come back (will graze on kelp like sea stars do). (Source #18).

Video (7 min) on the state of knowledge on the Syndrome (January 2014) and showing the progression of the Syndrome in sunflower stars around Washington / Southern BC.

Sources:

  1. Email communication with Neil McDaniel.
  2. Email communication with Andy Lamb.
  3. http://www.vanaqua.org/act/research/sea-stars
  4. http://www.eeb.ucsc.edu/pacificrockyintertidal/data-products/sea-star-wasting/
  5. http://commonsensecanadian.ca/alarming-sea-star-die-off-west-coast/
  6. http://www.businessinsider.com/disease-ravaging-west-coast-starfish-2013-11
  7. Shellfish Health Report from the Pacific Biological Station (DFO) conducted on 1 morning sun star and 7 sunflower stars collected on October 9, 2013 at Croker Island, Indian Arm; case number 8361.
  8. Email communication with Jeff Marliave.
  9. http://www.reef2rainforest.com/2013/11/09/disaster-deja-vu-all-over-again/
  10. http://www.aquablog.ca/2013/11/family-relations-in-starfish-wasting-syndrome/
  11. http://www.komonews.com/news/eco/Whats-causing-our-sea-stars-to-waste-away–231982671.html
  12. http://www.washingtonpost.com/national/health-science/sea-stars-are-wasting-away-in-larger-numbers-on-a-wider-scale-in-two-oceans/2013/11/22/05652194-4be1-11e3-be6b-d3d28122e6d4_story.html
  13. https://science.nature.nps.gov/im/units/medn/symposia/5th%20California%20Islands%20Symposium%20(1999)/Marine%20Ecology/Eckert_Sea_Star_Disease_Population_Decline.pdf
  14. Sea star wasting syndrome, Nov 30-13http://jackiehildering.files.wordpress.com/2013/11/sea-star-wasting-syndrome-nov-30-13.pdf 
  15. Bates AE, Hilton BJ, Harley, CDG 2009. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Diseases of Aquatic Organisms Vol. 86:245-251 http://www.ncbi.nlm.nih.gov/pubmed/20066959
  16. Video showing impacts in Elliott Bay, Seattle http://earthfix.info/flora-and-fauna/article/sea-stars-dying-off-west-seattle/
  17. University of California, Santa Cruz Press Release; December 22, 2013; Unprecedented Sea Star Mass Mortality Along the West Coast of North America due to Wasting Syndrome
  18. Vancouver Aquarium; January 21, 2014; Presentation – Mass Dying of Seastars in Howe Sound and Vancouver Harbour (Dr. Jeff Marliave and Dr. Marty Haulina).
  19. Earth Fix; January 30, 2014; Northwests starfish experiment gives scientists clues to mysterious mass die-offs 

Images showing symptoms in other sea star species:

Ochre star (aka purple star) with sea star wasting syndrome. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Ochre star (aka purple star) with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Morning sun star with lesions indicating the onset of sea star wasting syndrome. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Morning sun star with lesions indicating the onset of sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Giant pink star with sea star wasting syndrome. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Giant pink star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

What was once a giant pink star. Photo and descriptor -  Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

What was once a giant pink star. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Follow

Get every new post delivered to your Inbox.

Join 456 other followers