Join me in the cold, dark, life-sustaining NE Pacific Ocean to discover the great beauty, mystery and fragility hidden there.

Can’t see the forest?

Can’t see the forest for the  . . .  fears?

Yes I am toying with this idiom to get your attention dear community. 

Please read. Please take just a few minutes to check in with yourself. Please share if this resounds with you. 


This week the findings of a very big, very important report went into the world.  Likely you noted the heft of it; urgent words accompanied by imagery of burning, flooding and/or orange, red and yellow graphs?  

Yes, I am talking about the 2021 report by the Intergovernmental Committee on Climate Change. Stay with me!  What was your reaction? What did you feel? What will you do?

Take a few minutes please to reflect on this. Was it an emotional cocktail of overwhelm, fear, despondency, shutdown? This would be so understandable, especially for you who are already striving for so much socio-environmental good. But, BUT reflect on the amplified danger of this. 

If we shutdown, if it is “too much”, if we bury it, or if we reject  . . . where is the action? Where is the resolve and dedication to change? Where is the empowerment? Where is the future? 

It is such a difficult and delicate dance in how to communicate the urgency for change while not stimulating the fear that catalyzes paralysis or for “hope” to replace action.

What to do? Feel it and then .  . . do it.

We don’t need to be perfect in our actions. That notion also manipulates / debilitates us into eco-paralysis.  But we do need to act. 

At the very core of what needs to be done is that we need to reject that the use of less fossil fuels is about loss. We need to know the great gains achieved by our consumer and voter actions. We need to act on the knowledge of the common solutions to so many problems being achieved through less fossil fuels, less consumerism (consumerism most often fuels fossil fuel use), and more nature. 

We need to model the happiness that comes from empowerment and valuing our reliance on the natural world (like the kelp and trees that absorb our carbon).

We need to embrace that disempowerment is not only individually disabling, it is the denial by those who have power over the rights and choices of others.

Care more. Consumer less. 

Vote for future generations. 💙


Photo: Bull Kelp Forest in Kwakwaka’wakw Territory.  Kelp forests too are in a state of change through a suite of variables that are related to climate change. More heat and/or more wind challenges their health as does the balance of their predators e.g. more grazing by urchins as a result of less Sunflower Stars. ©Jackie Hildering The Marine Detective


Do you need more red, orange and yellow graphs? Probably not, but if you do or if you want to look at the scenarios for the best future:

IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield,
O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.


For those who have found their way here but, for whatever reason, are not able to believe there is a climate crisis, my empathy to you. If this post provokes you, there is emotional truth in that too. There are of course deep reasons for why you believe what you do. Please know that I understand but I will not tolerate any comments that are motivated by countering precaution and/or countering science and reasoned and respectful dialogue.

Stop! That’s not garbage! Moonsnail eggs

This blog is so overdue. Over a year ago, a social media post I made about moonsnails went viral. That’s how many people valued learning that these egg collars are NOT garbage.

Below, I provide the image and text from that viral post but . . . this blog grew into so much more. Read on, I truly believe you will be moved by the marvel of moonsnails.

Text provided with the above image: “Oh oh. With recent low tides it has surfaced again that (mostly) well-intentioned people are moving or “cleaning up” moonsnail egg collars. These are not garbage. They are wondrous constructions to house and protect moonsnail embryos (of several moonsnail species on our coast).

Detail: The female moonsnail forms one layer of the collar by gluing together sand grains with mucus; then the fertilized eggs are laid on this layer and THEN she seals them in with another layer of sand and mucus!

The female forms the collar under the sand and then forces it above the sand when done. The thousands of eggs develop in the the sand-mucus matrix. The process of making the egg collar takes 10 to 14 hours and reportedly starts at the beginning of a flood tide.

As long as conditions are good, the egg collars found on beaches are likely to have embryos developing inside them (if they are still rubbery and moist). When the egg collar is intact as you seen in the images above, the young have NOT hatched out. The collar disintegrates when the larvae hatch.

The larvae are plankton for 4 to 5 weeks and then settle to the ocean bottom to develop further. There is contradictory information on how long it takes the eggs to hatch (one reliable source relays about 1 week while another reports up to 1.5 months). The moonsnail species in the photo above is the Northern Moonsnail whose shell can be up to 14 cm wide (Neverita lewisii is also known as Lewis’ Moonsnail). Photos taken in British Columbia, Canada but there are moonsnail species, and their collars, off so many coasts.”


What has catalyzed my finally also adding this content to my blog is that Mickie Donley shared her video with me showing a female Northern Moonsnail pushing her eggs to the surface.

You might be wondering how a snail THAT big can fit into their shell. Through the rapid uptake of seawater, the foot of can inflate up to four times the size of what it is when in the shell The water is expelled when moonsnails squeeze back into their shells. They need such a big foot to dig for their clam prey AND for females to construct their egg collars below the sand.

The Northern Moonsnail is the largest moonsnail species to 14 cm long (Neverita lewisii). Males are smaller. Species reported to live to 15 years. It’s the most common moonsnail species off the coast of British Columbia.

With the entry to the shell having to be big, of course moonsnails need an “operculum”, a door-like structure that seals off the opening to the shell. See my “Shut the door” blog on opercula at this link.

A Northern Moonsnail’s operculum – the structure attached to the bottom of the animal’s foot so that when it retreats into its shell, the opening is sealed.
The structure indicated with the arrow is the moonsnail’s incurrent siphon, which draws fresh, oxygen-rich water in and over the moonsnail’s gills for respiration. The siphon is not related or connected to the water system in the foot.

Who drilled those holes? Moonsnails!

While some whelk species also drill holes into their prey with their radula (rough tongue-like structure), when moonsnail species drill holes into their prey, there is the sunken / bevelled edge you see here. Notice too how the hole is almost always near the “umbo” of their prey’s shell (highest part). That’s also a clue that the predator was a moonsnail species, not a whelk species. See bottom of my blog at this link for more information on the radula.

From Washington State’s Department of Ecology: “The average moonsnail takedown lasting 4 days as it drills ½ mm per day. In order to speed things up a bit, the moon snail produces hydrochloric acid and other enzymes to help dissolve the shell and liquefy the clam’s insides . . . Once a perfectly rounded hole is made in the shell, the moon snail inserts its tubular, straw-like mouth and slurps up the “clam smoothie” inside. It can take another day or so for the moon snail to ingest the clam innards. Talk about delayed gratification!”

Note that I have found moonsnail shells with holes drilled into them from . . . . a moonsnail.


Who goes there?
I believe the tracks in my image below are from Northern Moonsnails.

Moonsnails clearly need to live in sandy habitats. It’s where their prey live and they also need the sand to make their egg collars.


Notice the mucus trails behind the Northern Moonsnails in the images below. While I have found no research to support this, I wonder if the the mucus may have a chemosensory role so that individuals may more easily find one another for mating.

Other moonsnail species?

There are five species of moonsnail that range from Alaska to southern California or northern Mexico.

  1. Northern Moonsnail as shown in all the images above. Neverita lewisii is the biggest moonsnail species in the world (largest member of the Naticidae family).
  2. Aleutian Moonsnail – Cryptonatica aleutica to 6 cm across.
  3. Arctic Moonsnail – Cryptonatica affinis to 2.5 cm across.
  4. Pale Arctic Moonsnail – Euspira pallida to 4 cm acrross.
  5. Drake’s Moonsnail – Glossaulax draconis to 9 cm across and more common in California.
    Note that it is acceptable to use “moon snail” and “moonsnail”.
Aleutian Moonsnail (Cryptonautica aleutica). Notice the brown dots on the mantle in this species.

I feel better! How about you?

There, I feel relief now that I have finally been able to commit this information about moonsnails to a blog.

I considered entitling this “Moonsnails – the Gateway Mollusc”. Why? The Northern Moonsnail is one of the first species that erupted the lava of interest within me for marine invertebrates. It started with two mysteries: I found a shell with a perfectly round hole drilled into it and . . . I found the strangest, grey, round, seemingly cemented coils of sand.

Look where it got me. 🙂

I hope this added to your knowledge and appreciation for marvellous moonsnails.

Female Northern Moonsnail pushing her eggs to the surface.
A different female Northern Moonsnail than in the image above digging back into the sand after pushing her egg collar to the surface.

More detail on moonsnail reproduction and feeding from Dr. Thomas Carefoot’s “A Snail’s Odyssey

Reproduction:
Sexes are separate in moon snails [Neverita lewisii] and sperm transfer is direct via a penis . . . The fertilised eggs are enclosed one to a capsule and extruded from the female in a mucousy mixture that is combined with sand (left drawing below).

The colour of the egg collar depends upon the type of sand and other inclusions contained within it.


Each egg/embryo rests in a jelly matrix within an egg capsule. Moon snail veligers range in shell length from 150-200µm. The unusual shape of the egg collar results from the extruded mixture being moulded between the propodium and the shell before it sets into its final sand/jelly state (left middle drawing below).

The extrusion and moulding take place under the sand, commence at the start of flood tide, and take 10-14h. After the initial moulding is finished, the female works over the egg-collar surface one more time adding a protective sheath of sand and mucus (Right middle drawing below) and, at the same time, pushing the collar upwards to the sand surface (right drawing below).

Development within the capsule to a swimming veliger larva takes a week or so, and it is possible that the capsular fluid is utilised as food. Simultaneous with the emergence of the larvae from their capsules, the sand-mucus matrix of the collar disintegrates and the larvae swim freely in the ocean.

Feeding

Adult moon snails are strict predators and mostly eat bivalves. As many of their prey live at depths of up to 20cm or more, the snails have to burrow quite deeply to find them. Burrowing by moon snails is enabled by a large foot that is capable of inflating up to four times the shell volume through uptake of seawater. The inflation is quick, allowing fast penetration into and displacement of sand. The moon snail catches hold of its prey and hauls it to the surface to begin drilling.

Moon snails manipulate the shell of their bivalve prey so that the umbo is closest to the mouth. Whether this provides easiest handling, or whether it is to place the drill-hole directly over the bulk of soft body tissues, is not known.  Another special feature of drill holes of Neverita lewisii is that they are countersunk. This feature allows the predatory records of the snails to be monitored more closely than that of, say, whelks (whose drill-holes are less distinctive). After a hole is drilled, the snail extends its proboscis hydraulically and commences scraping and eating the soft internal tissues with its radula, which is at the tip of the proboscis.


Sources:

Carefoot, Thomas. A Snail’s Odyssey

  • Moonsnail feeding
  • Moonsnail reproduction
  • Moonsnail locomotion

Daily Kos, Marine Life Series: Moon Snails and Sand Collars

Gronau, Christian – Cortes Museum blog; The Biggest Moon of All

Lamb, A., Byers, S. C., Hanby, B. P., Hanby, B. P., & Hawkes, M. W. (2009). Marine life of the Pacific Northwest: A photographic encyclopedia of invertebrates, seaweeds and selected fishes. Madeira Park, BC: Harbour Publ.

Washington State Department of Ecology – We’re over the moon for the moon snail

Get Back I Tell You!

Here’s a post about anemone enemies (say that 5 times).

See those really long tentacles extending from the Short Plumose Anemones in the following image? These are “catch tentacles” that can extend to be up to four times longer than the feeding tentacles.

Short Plumose Anemones reach around with these specialized, extendable tentacles and THEY ATTACK if they come in contact with a different species of anemone, or others of the same species who do not have the same DNA (are not their clones).

The tip of the specialized tentacle breaks off and kills the cells in the spot where they touch their anemone enemy. Apparently this can even kill the target anemone. Short Plumose Anemones on the outside of a group of related clones are more likely to use / develop these specialized tentacles.

Short Plumose Anemones AND Giant Plumose Anemones also have nematocysts (stinging cells in their feeding tentacles) AND they have acontia. See following image. These are defensive strands filled with stinging cells that are EJECTED from their mouths or through the anemones’ bodies when threatened or stressed. These threads extend far beyond the anemone and provide longer distance defence than the stinging cells.

None of the stinging cells of local anemone species impact we humans. But how I wish I had some acontia! Yes, I have defence envy. 🙂

From Invertebrates of the Salish Sea: ” Animals on the border of a clone often develop up to 19 “catch tentacles”, which generally occur close to the mouth.  These tentacles, which are larger and more opaque than the other tentacles, have special nematocysts and are unusually extensible (they can become up to 12 cm long or more).  They probe the area around the anemone.  While they do not respond to food, they DO fire when they contact either A. elegantissima [Aggregating Anemone] or another clone of M. senile.  When it fires, the tip of the tentacle breaks off and sticks to the victim, which may retract and bend away.  Tissue damage can generally later be seen in the stung area, and the attacked individual may even die.”

Image is of Giant Plumose Anemones = Metridium farcimen to 1 metre tall. Short Plumose Anemones are Metridium senile to only 30 cm tall and their crown is not as lobed. This photo is the image for this month’s WILD Calendar.

Photos taken in Kwakwaka’wakw Territory near Telegraph Cove, ©Jackie Hildering

Great White! Not what you think . . .

Great White!
Not quite what you were expecting?  

These are Great White Dorids. Yes, they are a species of nudibranch and the individuals featured here are mating, prowling for sponges AND succeeding in laying their astounding egg masses.

Mating Great White Dorids: Reproduction of nudibranch species is always right-side-to-right-side; attached by structures called “gonophores”. As reciprocal hermaphrodites, both parents become inseminated and lay eggs.

EACH dot you see in the egg masses (photos below) contains 8 to 12 fertilized eggs. They are laid by both parents because it makes a lot of sense to be a hermaphrodite when you are a sea slug and your eggs hatch into the sea. More fertilized eggs = more chances of some young surviving.

Even after so many years, I find the intricacy and diversity of sea slug egg masses something of jaw-dropping wonder. Not such a good thing when you are supposed to hold a regulator in your mouth while diving. 🙂

Scientific name of this species is Doris odhneri. They can be up to 20 cm long and their egg masses can be at least that size too.

Body design is classic for the sub-classification of nudibranchs that is “the dorids”. Those tufts on their hind ends are the gills and the projections on their heads (which all nudibranchs have) are the sensory rhinophores (rhino = nose). It’s how they smell their way around to find mates, food and whatever else is important in their world.

Notice in the next photo how dorid species are able to retract their gills when disturbed by the likes of an annoying underwater photographer.

Gills retracted.

Amazing too to think of the importance of smell in the sea isn’t it? Why is the individual in the following photo reared up like that? I believe it allows a better position to smell / detect the chemicals of food and/or a mate. Maybe they are even releasing pheromones? Note that is me musing. There is no research I know of to support this.

Same individual as in the first photo in this blog. I asked super sea slug expert, Dave Behrens, about this behaviour years ago and his response was: “I will agree the “rearing” is unusual in this group of dorids. Rearing is common amoung phanerobranch dorids (those that cannot withdraw their gill) . . . Although we will never know for sure, the behavior is thought to be a way for the slug to elevate itself above the substrate in search of chemical clues for its favorite prey.”

In featuring this species, the Great White Dorid, you see that not all nudibranch species are super colourful. But they are all super GREAT.


Species is also referenced as the GIANT White Dorid or Snow White Dorid, or White Dorid or White-Knight Nudibranch . . . etc. Known range is from southern Alaska to California but it’s a species I don’t see often where I dive around northeastern Vancouver Island. 

Another perspective on a Great White Dorids astonishing egg mass.
Prowling for sponges, a mate, or both. 🙂
Poor photo (because my camera housing had moisture in it that condensed in front of the lens) BUT this image shows a Great White Dorid laying an egg masss. It’s one of the times I caught a Great White Dorid in the act whereby I could know what the egg masses look like for this species (albeit that there are some closely related species of nudibranch that lay very similar looking egg masses).

All photos taken in Kwakwaka’wakw Territory, NE Vancouver Island ©Jackie Hildering.


Mask Squeezed and Lessons Learned

This is a personal post.

This is me 21 years ago, about a week after I got “mask squeeze” on my 37th birthday. I came across the photo recently when looking for a bio picture for a presentation. It was taken as a staff photo when I had the joy of teaching children with special needs.

I found myself staring at the photo, at younger me, and thinking of how much has been learned since then. I am sharing with you because . . . because why? Sure, there’s a lesson in physics here but that’s not it. There’s also maybe something of value in how the most important things in life sometimes don’t come easy. But more, it’s about what I have learned in these years, what I strive to put into the world, and why.

This image has an empty alt attribute; its file name is p1191546.jpeg

It won’t surprise you to know that you can’t be the same after you’ve been punched in the face by the Ocean. So here goes:

Mask squeeze happened on my twentieth dive when I did not know enough to realize how little I knew. It was my second birthday back in British Columbia after my many years of teaching in the Netherlands.

I was on a dive trip to some of the most challenging conditions on our coast. The accident happened during one of my first dives in a dry suit. I now know it was madness to be doing my first dives in a dry suit in such challenging conditions. But it was the result of some human chaos and unreliability whereby the suit was not ready when it was supposed to be. Thereby, I could not practice before the trip and get used to the change in buoyancy from my Dad’s old, thin wet suit.

On that 20th dive, when I rolled into the water off the boat, my fin slipped off my suit. My mask flooded. I did not realize I was holding my breath as I tried to grab the fin. I continued to descend whereby the pressure in my mask did not equalize. BOOM! The pressure of Mother Ocean pushed against my mask and blew out every capillary in my eyes.

From my dive log back then: “ Whatever it took, it was SO worth it. Astounding, astounding life. So grateful to my dive buddies who helped me and who decided the dive site should now be named Shiner Rock.” Yep, I have a little island unofficially named in my honour.

It was a powerful lesson in shaping me on this path . . . the vital importance of humility, respect, and knowing one’s place in the natural world.

Since then, I have metaphorically faced equivalent injuries, usually inflicted as a result of human ego and disconnect from understanding how our actions impact future generations.

The resulting process has been the same: learn, heal, surface, and repeat.

I will admit too that this photo makes me reflect on the few who say to me “You’re so lucky” or who have had the need to try to blow out my fire. I am so very lucky in many ways but, as much as I do not know the journeys of others, very few know my path. There have been difficult choices made and painful lessons learned. We’ve all had those.

I’ve written about having mask squeeze once before, after my 800th dive over seven years ago. There I reflected: “The Ocean is the source. The battle force. She is my inspiration. She is the beginning and she is the end. She is where I hide and where I am fully exposed. She has taught me my most valuable lessons and . . . . I know it’s not over yet. Not by a long shot.

I thank all who carry me forward – from my dive buddies to you who signal shared values and understanding. Please know how much direction you give.

Onward, fuelled by lessons learned and knowing what matters most. 💙


See this link for my previous blog about mask squeeze and lessons learned:
“My 800th Dive. From Shiner to Shining?” from January 2014.

Submerge With Me . . .

Come into the dark and colour with me.

This 1.5 minute video is my attempt to bring the astounding biodiversity of the cold, rich waters of the NE Pacific Ocean to the surface.

If there is one thing I hope to achieve, it is to shatter the perception that — because you can’t see to the bottom — there must not be much life in these waters.

The opposite it true.
 
The reason you can’t see to the bottom is because there is SO much life.

Enjoy. Share! And please join me for Ocean Day on June 8th. Details below. 

 
Please see the two webinar opportunities for Ocean Day, June 8, 2021 at www.mersociety.org/events.  

With GREAT thanks to Dawn Dudek for her support in reworking this slide show and to Hunter Molnar Stanton for her help with the first version.

Marine Murmuration – Pacific Herring

Rapturous. That’s a word I do not use easily, but it captures my feelings about today.

I saw the shimmering in the distance . . . Pacific Herring near the surface, scales reflecting the sunlight, the school mercurial, its members seemingly moving with a collective consciousness.

I hung back and tried to drink in the beauty. I knew my bubbles would disturb them and that I could therefore never capture the beauty in a photo.

But then . . . suddenly a river of flashing silver was streaming in my direction. Something had startled them on the opposite side of where I was. I held up the camera and repeatedly depressed the shutter release button while I lived the seconds of hundreds of herring bolting past. Then, they were in the distance again; a marine murmuration; the life’s blood of this ecosystem.

Cropped image.
 The school in the distance again, such beauty with flowing Bull Kelp and the sun streaming down.

Survival against so many odds. These little fish have survived against so many odds and so vital to so much life on our coast; not just in the Ocean but also to predators from sky and land.

Shorebirds, bears and wolves feed on the fertilized eggs. Hungry Humpbacks target giant mouthfuls to gain back weight lost in the breeding grounds. Bald Eagles deftly snatch talons’ full and then feed in the air. The Pacific Herring also feed the Chinook Salmon that sustain endangered Orca.

They have also fed human cultures and commercial fisheries and debate and demonstration.

May the feed precaution and reflection on what will sustain future generations.

Long live herring.

This image is from a previous chance to see Pacific Herring in the distance while diving – January 31, 2021, Telegraph Cove.

An Octopus Hunting

A female Giant Pacific Octopus hunting . . . photos brought to the surface for you on April 4, 2021.

This individual lives north of Port Hardy, in Browning Pass.

She’s a giant among other giants.

The Giant Plumose Anemones stand tall above her, at up to 1 metre in height.

Her arms feel between the rocks to flush out prey, her mind processing all she detects from her eight limbs, her vision, and the further stimuli upon her skin.

A China Rockfish is hovering nearby, likely often accompanying her when she is hunting to benefit from what prey emerges when touched by her arms.

Her colours change, flashing white at times. Then, again camouflaged among the boulders covered with the pink of coralline algae species, and studded with Orange Cup Corals and the plumes of feeding tentacles of Orange Sea Cucumbers.

Two humans are in awe at chancing upon her and being able to hover, navigating the space between not wanting to disturb and also wanting to amplify the wonder above the surface, hoping it somehow contributes to being better humans.

We’re aware too that we are limited by how much air remains in our tanks; the nitrogen building in our blood; and the cold creeping in through our dry suits (despite the adrenaline surge of watching her).

But she, she is limitless here.

She is perfection.

This image provides a clue about her gender. See information near end of the blog.

Please note that photos are cropped.
Our presence was certainly not undetected but wanted to minimize disturbance.
The China Rockfish that was following her as she hunted.
Her eyes are closed (likely due to the annoying light coming from me) but she can still detect light. Read below.

Octopus Gender:

I know this was a female because the third arm on the right does not have a “hectocotylus”. Male octopuses have a specialized arm with no suckers at the tip called the “hectocotylus arm” by which they hand off spermatophores to the female. In Giant Pacific Octopuses, the hectocotylus arm is the third on the right. See more in my recent blog “Giant Pacific Octopuses, How Do They Mate?” at this link.


Octopus Vision:

You can see that the pupil’s shape is very different from ours. Their retina is very different too.

Octopuses and other cephalopods have only one kind of photoreceptor cell while we have rod cells and three types of cone cells allowing us to see in colour. So how can cephalopods discern colour when they have only one kind of light receptor in their eyes? And they must be able to discern differences in colour. Consider how they signal with colour and how they camouflage.

Research from 2016 puts forward that their uniquely shaped pupils act like prisms, scattering light into different wavelengths (chromatic aberration), rather than focussing the light into a beam onto the retina.  The hypothesis, tested with computer modelling, is that cephalopods can then focus the different wavelengths onto their retina separately by changing the distance between the lens and the retina, thereby separating the stimuli and discerning colour. Note that the sharpness of their vision is believed to be different for different wavelengths / colours.

Even with their eyes closed, octopuses can detect light with their skin. This is tied to their ability to camouflage with the photoreceptors in their skin responding to specific wavelengths of light (different wavelengths = different colours).

Note too that octopuses do not have eyelids. They have have a ring-shaped muscular fold of skin around the eye that closes in the way of an eyelid (especially when some annoying human is taking photos).


More Octopuses Hunting

Here’s the link to another experience where we saw a Giant Pacific Octopus hunting AND interacting with a Wolf-Eel (includes video).


Sources

Katz, I., Shomrat, T., & Nesher, N. (January 01, 2021). Feel the light: sight-independent negative phototactic response in octopus armsThe Journal of Experimental Biology, 224.

Stubbs, A. L., & Stubbs, C. W. (July 19, 2016). Spectral discrimination in color blind animals via chromatic aberration and pupil shapeProceedings of the National Academy of Sciences of the United States of America, 113, 29, 8206-8211.

B-Earthday 2021 and the Ark Video 1988

April 22nd.

It’s Earth Day. It’s also my birthday.

One of us is 4.543 billion years old. One of us in 58.

I’ll let you decide which is which. 🙂

So . . . it’s B-earthday.

My head just after a dive on April 21, 2021.

And while everyday is an earth day for those of us on this blue planet, April 22nd is a day to increase resolve to live knowing our place IN the environment, because that’s where greatest well-being lies.

With this also being my birthday, maybe there is even greater reflection and taking stock – the lessons learned; the how-did-we-get-here; what has changed; what has not; the way forward; how much time is left . . . you know, the big stuff.

The privilege of reaching this age includes that there is more knowing of what has been, which helps inform how to move forward. There is greater understanding of the pushes and pulls on human values, and a greater ability to see over greater timelines, and know common solutions.

Yeah, my head does not spin as much at this age.

THAT was my clumsy segue to the following. For a long time, I’ve wanted to share “The Ark Video” which dates back to 1988. I found it so powerful at that time and believe it still has value and “deserves” to live on the internet, where it may still have positive impact.

The video features Dawn French as Mother Earth, scolding humanity, her children. You know Dawn French. She’s the fabulous British comedian of the “French and Saunders” duo, the “Vicar of Dibley”, the “Fat Lady in the Painting’ in Harry Potter, etc.

Look! The video is so old, it was on VHS and I had it converted to DVD. A reminder that 1988 was pre-internet and before most of us had computers.

There’s that reflection again: How quickly some things change, while others do not, and . . . why?

Watch the video with that in mind?

Note that the organization being promoted, The Ark Environmental Foundation, never proceeded with the promise this video provided. They faded out by the early 1990s. I don’t know why. There were big names involved. Kevin Godley of the rock band 10cc was the director of the video and I believe David Bowie was associated with Ark too.

Wanting words aimed at inspiring the way forward?

Please see my “Ocean Voice” post at this link.


For film details about The Ark Video, see this link.

Gunnel, Gunnel, Gone!

Meet the Penpoint Gunnel, another fabulous fish face and master of camouflage.

The colour of Penpoint Gunnels varies as much as the colour of seaweed . . . from olive green, to golden brown to red. In fact, the colour of Penpoint Gunnels is generally such a perfect match to their seaweed habitat, that they sometimes seem to disappear into it. Presto – gone!

I recently met the individual in the photo above. We were in the surf zone at about 3 metres depth, the water above our heads crashing against the rocks. One of us was way better adapted to go with the flow. It wasn’t me.
Penpoint Gunnel is Apodichthys flavidus to 48 cm long.

There’s a great paper from 1966 by Don Wilkie on the colour of Penpoint Gunnels. An interpretation of the paper by FISHBIO includes: “The coloration of adult penpoint gunnels typically matches the dominant algal community of their habitat. Green individuals are found in the upper intertidal zone where green algae (and eelgrass) is most common, brown specimens most frequently occur in the mid-to-lower intertidal zone where brown algae mainly occurs, and in deeper water where red algae become increasingly prevalent, penpoint gunnels tend to be red as well.”

Here’s a mystery. Penpoint Gunnels CAN’T change their colour to match their surroundings. So how can they have the variety of colour and be so well-matched to their habitat, as is evident in my photos below? Read on!



How can they be such a match to the algae when they cannot change their colour? Is colour determined through the genetics of their parents? Research suggests not! Is it determined by their diet when they are adults? Also no!

It appears that the colour is determined by (1) the vegetation upon which the transparent / colourless larvae settle and/or (2) by which amphipods the larvae eat.

From Wilkie: “Field and laboratory studies were undertaken to examine the ecological role of colouration in the penpoint gunnel Apodichthys flavidus . . . A. flavidus was found to prefer cover under rocks to that within vegetation, but when provided with vegetation alone chose that which it matched. The colour phases observed in A. flavidus were found to be determined directly by the pigments they contained not by differences in stages of chromatophore expansion . . . . Colour change experiments showed that A. flavidus cannot undergo complete changes of colour phase in response to environment alone. Diet has an influence on colour, but complete colour changes were not produced experimentally.

Larvae were reared from the eggs of green and brown individuals. All developed colouration more similar to that of the Artemia [brine shrimp] upon which they were fed than to their parental type . . . It is suggested that the colouration of A. flavidus has a cryptic function which is of importance primarily during food seeking. It is hypothesized that the vegetation upon which A. flavidus larvae settle in conjunction with early diet primarily determines the colouration of individuals.

So, while Penpoint Gunnels cannot change colour, they appear to be able to recognize and select the vegetation for which their colour is a good match. What this also suggests is that the depth where an individual started of his/her life as a larva, will be the depth where they would/should live out their life.

As described above, because of the limits of how deep wavelengths of light can travel, there are zones of seaweeds / algae. Green seaweeds are in the shallows, then there are brown seaweeds, and then red seaweeds are the deepest (their pigment can best absorb the blue-green light that can penetrate to greater depths). If a Penpoint Gunnel started off as a larvae feeding on amphipods that are well-matched to green seaweed, the research supports this is what would make them green coloured. If that individual moved deeper into the brown or red zone, they would not have the appropriately coloured seaweed to match their colour.

ID Challenges

It can be wonderfully difficult to discern Penpoint Gunnels from the other gunnel species off the coast of British Columbia (6 species total).

If you get a really good look at the back end of a Penpoint Gunnel, that really helps in IDIng the species. The “penpoint” refers to the first spine of the anal fin. It’s large and grooved like a fountain pen point. Yes, I know that most often that ID tip is not really going to help with a live individual. 🙂

I find it the most difficult to discern Penpoint Gunnels from Crescent Gunnels (Pholis laeta to 25 cm) and Saddleback Gunnels (Pholis ornata and 30 cm). Those species also have a wide variety in colour and have the black bar by their eye and, Penpoint Gunnels also can have markings along their backs. I don’t believe it is known how their colour of Crescent and Saddleback Gunnels is determined.

Then there are also Rockweed Gunnels, Longfin Gunnels, and Red Gunnels off the coast of British Columbia. Oh, and there are other elongate fish found in similar habitats, like species of prickleback and cockscomb!

The next six photos are included to maybe help with IDing gunnels. They are all NOT Penpoint Gunnels.

Then, at the end of the blog, there’s a fun fishing finding venture for you.

Who goes there? I initially had this individual identified as a Penpoint Gunnel but was thankfully corrected by Andy Lamb. He pointed out that this is either a Crescent or Saddleback Gunnel because there are pale bands adjacent to the dark ones through the eyes.
Crescent Gunnel – common name is for the crescent-like markings along the back.
Another Crescent Gunnel. You can see the crescent-like markings better with this perspective.
Ths is another Crescent Gunnel and here you can see that there are very tiny pelvic fins in front of the pectoral fins (that little bump). Penpoint Gunnels do not have those.
This is NOT a Crescent Gunnel. Andy Lamb let me know this is a Saddleback Gunnel because Saddleback Gunnels have darker stretches between the markings along their backs and because these markings are more saddle-shaped than crescent-shaped. Sure, that should help! You say saddle. I say crescent!
Er sorry – things are even more fun. This is not a Penpoint Gunnel, nor Saddleback Gunnel, nor Crescent Gunnel. It’s a Longfin Gunnel (Pholis clemensi to 13 cm long). How to know when colour and the markings along the back are similar to other species? There are those little dots along the midline of the fish. Yes, it’s often a combination of features that help determine the ID.

Find the Fish!

Many of you may know that every Friday I do a “Find the Fish Friday’ challenge and have two children’s books by the same name. These are the “Where’s Waldo” of the fish world with the intent being that, when people search for the fish in my images, they are also absorbing what the life looks like in the dark, rich Northeast Pacific Ocean.

Below are two such challenges where there is one fish to be found in each photo and it is a Penpoint Gunnel. At the very end of the blog I reveal the location of the fishes. Enjoy!


Summary for Penpoint Gunnels

Species information from “Certainly More Than You Want to Know About the Pacific Coast” by Dr. Milton Love includes:

Maximum length to 46 cm. The Ranges: Kodiak Island to Santa Barbara and Gaviota (Southern California). They are abundant from at least Prince William Sound (northern Gulf of Alaska) to Central California. Intertidal to 8, including tide pools. Most fish live int he intertidal or barely subtidal . . .

Penpints are long, thin, and eel-like, distinguished by a deeply grooved spine on the front of the anal fin (hence the name “penpoint”), a line extending downward through the eyes, and no pelvic fins. The body colour is highly variable: orange, red, and magenta, bright green, olive, or bronze. While usually a solid colour, the body can be highly mottled, with a row of dark or light spots along the midline . . .”


Answers to the two Find the Fish challenges above

This was the very same fish as in the first photo in this blog. I photographed him/her in April 2021 in Browning Pass.
This little guy/gal was in only about 2 metres depth beside a boat ramp in Port Hardy. This is one of the challenges included in my first Find the Fish book.

Sources