Join me in the cold, dark, life-sustaining NE Pacific Ocean to discover the great beauty, mystery and fragility hidden there.

Posts from the ‘MARINE MEGAFAUNA’ category

Worms That Bite Anemones?!

Okay, this is a true mystery.

I have relayed my observations to marine worm researchers but want to share with you too. It’s just too fascinating not to do so. These finds emphasize yet again how little we know even about marine species that are just below the surface. I also hope that by sharing my observations here, it may lead to other divers being on the lookout for these interactions and potentially adding to the knowledge about interactions between necklace-worms and anemones.

Necklace-worm species #1 and Proliferating Anemone – January 1st, 2008.
Necklace-worm species #2 and Short Plumose Anemones – March 6, 2022.

My observations involve what I believe are two species of necklace-worm. Each is interacting with a different species of anemone. In both cases, the species of necklace-worm is unconfirmed. The polychaete* researchers I have been in contact with have asked for samples of the worms to allow for microscopic examination and potential DNA analysis.

*Polychaetes are the “many-bristled” worms. They are worms that have a pair of paddle-like appendages / bristles on each segment. Most species of worm in this class are found in the ocean or in brackish water and there are about 15,000 known species globally. Polychaetes “are ubiquitous in the ocean, burrowing and hunting in the sand, crawling on algal covered rocks, living in self-made tubes, or swimming in the water” (Encyclopedia of Biodiversity, 2013).

Note that observations and photos here are from the Pearse Islands and Plumper Islands on northeast Vancouver Island in the territory of the Kwakwaka’wakw in depths less than 17 metres / 50 feet.


Necklace-Worm Species #1 and Proliferating Anemones:
I have written about this previously but include the observations here again so that the information about these necklace-worm / anemone interactions is bundled in one place. It involves a species of necklace worm appearing to bite into Proliferating Anemones (Epiactis prolifera to 8 cm wide).

My first observation of this interaction goes back all the way to 2008 when I documented the following thanks to the keen eye of my dive buddy Natasha Dickinson.

Both photos: Necklace-worm species #1 appears to be biting into a Proliferating Anemone – January 1st, 2008.

I do not know if the necklace-worm dislodged the anemone of if the anemone let go in an attempt to get away. We came upon this scene when the anemone was already upside down.

I have only noted this interaction twice since then. See photos below.

Necklace-worm species #1 and Proliferating Anemone – February 15, 2015. Note the “casings” the worms are in on the left.
Necklace-worm species #1 on the right and Proliferating Anemones – February 22, 2020. [Yes, on the left, those are babies of multiple ages hanging onto their mother. More about that at this link.]

For those who have Lamb and Hanby’s Marine Life of the Pacific Northwest, you may note that this species of necklace-worm looks like AN22 which is referenced as a “mystery necklace-worm”. But again, collection of a sample would be needed to confirm species ID.


Necklace-Worm Species #2 and Short Plumose Anemones:

On February 12, 2022 I saw THIS.

Necklace-worm species #2, Short Plumose Anemones AND the spaces where these anemones used to be. Many of these anemones are retracted. Photo February 12, 2022.

There are necklace-worms in those slime tubes! Where you see the circles is where other Short Plumose Anemones once were (Metridium senile to 10 cm tall and 4 cm across).

Close-up showing the necklace-worms. Photo February 12, 2022.

Were they always at this site? I have done a quick review of past photos and see a few of them in photos back to 2013. Variables in why I may not have noticed them before are that: (1) they were much more apparent as a result of the dislodged anemones; (2) there may be more of them now; and (3) we usually don’t focus on the spot where the concentration of these worms were (we usually dive deeper).

Here’s another photo from that dive to give a better sense of the size of the worms. That Blood Star is about 15 cm long. Photo February 12, 2022.

So TODAY’S mission was to return to this dive site and focus on the interaction between this species of necklace-worm and Short Plumose Anemones. How abundant are they? Are they biting the anemones?Are the worms anywhere other than around Short Plumose Anemones? Are the anemones using their acontia as a defense against the worms? Acontia are defensive strands filled with stinging cells (nematocysts) that are ejected when an anemone is irritated / threatened / stressed. The acontia can extend far beyond the anemone, providing longer distance defense than the stinging cells in an anemones tentacles.

Dive buddy Natasha Dickinson today. This is the exact same spot as what you see in the images from February 12th above. I contrast the two photos at the very end of this blog so you can see how things have changed after 22 days. Of course I do not know how much the anemones would move around in the absence of the worms.


To answer those questions:
– I found the slime tubes almost everywhere there were Short Plumose Anemones at this site. I did not find them anywhere else i.e. this species of necklace-worm’s slime tubes were only around Short Plumose Anemones.
– I only found a few Short Plumose Anemones using their acontia but it seems more likely that they were being used against other anemones. I cannot know if the anemones dislodge themselves as a defense. There were only a few places where there were the circles of slime tubes where an anemone had once been. There were far more places where the slime tubes were in amongst Short Plumose Anemones.
– YES I do believe this species of necklace-worm is biting into the Short Plumose Anemones. See below for abundant photos from today.

Some Short Plumose Anemones using their acontia. See those little white strands?


I will of course provide updates as I learn more via the researchers and other divers / underwater photographers. As always, I hope it is a source of wonder for you to learn more about these species, their adaptations and interactions, AND how much we humans still have to learn about the natural world around us. 🙂


All photos below are from March 6, 2022.

Taking a bite? Also looks like this anemone is about to undergo “pedal laceration” to reproduce asexually.
Here too it looks like some of the anemones are in the process of pedal laceration = form of asexual reproduction.

Below, you can contrast the same spot after 22 days. There has been a lot of change but again, I do not know how much the anemones would move around and/or dislodge in the absence of the worms. Oh no, is this now going to be my life? In addition to trying to document individual Humpback Wales and Tiger Rockfish, now I am going to try to document individual Short Plumose Anemones?! Probably.

It’s a Really Good Time to Be . . .

Yesterday, we found two Sunflower Stars!

See the juvenile here to the right of my buddy Natasha? There, right beside the mating Yellow-Rimmed Nudibranchs. This Sunflower Star was in just 5 metres of water.

Today’s two Sunflower Stars are the first I have seen in twelve hours underwater over the last three months and believe me, I have been looking. I only saw one before that. They are such a rarity now. Will these two survive? I have seen waves of juveniles before and then they disappear. Their plight appears to be linked to climate change.

Hope? With action . . . yes, there is shining hope.

Without action . . . no.

Please hang in there. Please read on.

I have been struggling too, looking for escape / reprieve from global realities as another “atmospheric river” is forecast to fall on parts of our province. It is so tempting to want to hide especially if we see the problems we are facing as disparate. They are not.

I have had to remind myself of the common solutions so that I see a way forward that is not guided by the faintness of blind hope; paralyzed by fear and overwhelm; and / or obfuscated by the din of values and voices that serve the few for a brief time.

Common solutions include: to know, live and share the GAINS that come from using LESS (fossil fuels, dangerous chemicals, disposables, less consumerism generally); to speak for truth and science and to have compassion for those who cannot; to exercise our power as voters and consumers to serve future generations; and to care and act on the knowledge of connection to others – across time, cultures, distance, and species.

In short, it’s a really good time to be a good human. 💙

I had to dig for these words for myself. As always, may they serve you too.


Photos: November 21 in Kwakwaka’wakw Territory near Port Hardy at a site where I have been monitoring sea star since 2013, ©Jackie Hildering.

The same juvenile Sunflower Star a few minutes earlier. Notice the fish? There’s a Painted Greenling on the left and a Blackeye Goby on the right.

For those who are not yet aware, I include the reality of Sea Star Wasting Disease (SSWD) below. A link to a summary of the research and where to report sightings is in my blog at this link.

The other Sunflower Star we saw yesterday.

Since 2013, more than 20 species of sea star have been impacted by SSWD from Mexico to Alaska. There is local variation in intensity of the disease and which species are impacted. It is one of the largest wildlife die-off events in recorded history. Sea stars contort, have lesions, shed arms, and become piles of decay.

Currently, some species of sea star appear to have recovered while others remain very heavily impacted. Sunflower Stars (Pycnopodia helianthoides) have been devastated and were added to the International Union for Conservation of Nature (IUCN) list as Critically Endangered. There are current efforts to have Sunflower Stars assessed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) with hopes that they receive protection under Canada’s Species at Risk Act.

There is NOT scientific consensus about the cause. Current hypotheses focus on (i) a virus and (ii) low oxygen at the surface of the sea star’s skin maintained due to bacteria. What is consistent in is that changing environmental conditions appear to allow the pathogen (be it bacteria or viruses) to have a greater impact.

The best current source for a summary of the research is Hamilton et al (August, 2021). From that source: ” . . . outbreak severity may stem from an interaction between disease severity and warmer waters” and “Though we lack a mechanistic understanding of whether temperature or climate change triggered the SSWD outbreak, this study adds to existing evidence that the speed and severity of SSWD are greater in warmer waters”.

What I believe to be the reality off the coast of British Columbia is that there are refuges of Sunflower Stars at depth where it is colder. They spawn with some young then settling in the shallows where they may succumb to the pathogen if stressed by warmer water.

Close up on the second Sunflower Star. This one was at about 20 metres depth.

We Are the Weather Makers

I recently had the great joy of meeting artist Nico Kos Earle through another artistic powerhouse, Dawn Dudek.

In this meeting, Nico referenced a line from her poem “We Are the Flood” that hit me full force with its power to capture so succinctly the reality of we humans and climate change. That line is: “We are the weather makers“.

Below I share the full poem with Nico’s permission. There is so much in the words that moves me and fortifies my resolve.
May it do the same for you. 💙

Poem: Nico Kos Earle
Image: Horizon the Humpback by yours truly.

Pacific Spiny Lumpsucker – the fish, the disc, the marvel

Today I right a great wrong. For how can it be I did not have a blog featuring the Pacific Spiny Lumpsucker? This is one of the most cryptic and astoundingly adapted fish in the north Pacific Ocean.

Yesterday, I chanced upon the individual in the photo below and he is what finally catalyzed this blog. Just look at him! He is only about 2 cm long. I noticed him because he was swimming / hovering around like a minuscule zeppelin. Then he alighted on a rock, securing with the pelvic disc this species relies upon.

Pacific Spiny Lumpsucker who lives in Kwakwaka’wakw Territory near Telegraph Cove.
Photographed November 6, 2021

To be a little, round fish like this, nature had to do something to make sure you don’t roll over. You need to be able to secure, not only to rock, but to seaweeds and Eelgrass. The “solution” is that Pacific Spiny Lumpsuckers are among the fish species in which the pelvic fins have evolved into a sucker on their bellies.

This species has very small pectoral fins (even relative to body size) and does not have a swim bladder to help with buoyancy. All the more need to have the disc to be able to hold on between short hovering swims.

My video of a Pacific Spiny Lumpsucker from 2015.

Pacific Spiny Lumpsuckers don’t have scales but rather have lumpy, bony plates known as “tubercles”. Maybe these are what the “lump” in their common name refers to.

There have been many creative attempts to describe the overall appearance of Pacific Spiny Lumpsuckers from simply “cute” to “pingpong ball with fins”, to “swimming strawberries”, “underwater bumble bees”, and . . . “a fish that has quietly come to terms with looking idiotic”. Thanks Dr. Milton Love for that last descriptor. You can imagine the many jokes and allusions made about their name which “sounds like a Shakespearean insult” (comment made by Angela Flute on YouTube).

The species name Eumicrotremus orbis references their rotundity and size. Maximum known length is 12.7 cm but they are more often much smaller, around 2.5 cm.

I believe the Pacific Spiny Lumpsucker we saw yesterday was a male because mature males are reported to be dull orange to reddish brown. Mature females are pale green and have more and larger tubercles.

Another male and you can see part of the pelvic disc. ©Jackie Hildering


The one in Paul Wright’s video below is most definitely a male. See the egg-guarding? Male Pacific Spiny Lumpsuckers guard the eggs after fertilizing them, oxygenating them by wafting water over them and protecting them from predators. It’s reported that males die after the eggs hatch and that the females die after egg laying (average of 202 eggs, size of each egg is ~2.2 mm). Outside of when they are breeding, this is a solitary species. Appear to have a life expectancy of around 1 year in aquariums (Casey Cook, pers. com).

It is normal that Pacific Spiny Lumpsucker’s mouths are almost always open and that they appear to be panting (as you see in the video).

Video by W. Paul Wright from 2014with descriptor: “Video taken in Gibsons British Columbia. Male lumpsucker tending to newly laid eggs in discarded Ponds jar.”
Video by Ricky Belanger from 2018.
Video by Victoria High School from 2009 from their aquarium.

Further species information:

Range: Northern Washington to the Bering Sea, along the Aleutian Islands to Siberia and northern Japan. Intertidal to 575 m. Source: Lamb and Edgell, 2010.

Diet: “Small crustaceans such as gammarid andy hyperiid amphipods, along with caprellid amphipods, isopods, and cumaceans” [hooded shrimp species]. Source: Love, 2011.

He’s not smiling. YOU’RE smiling.
©Jackie Hildering

Sources:

Arita, G. S. (December 01, 1969). Sexual Dimorphism in the Cyclopterid Fish Eumicrotremus orbis. Journal of the Fisheries Research Board of Canada, 26, 12, 3262-3265.

Aquarium of the Pacific – Pacific Spiny Lumpsucker

Cook, Casey, personal communication November 7, 2021

FishBase – Eumicrotremus orbis

Lamb, A., & Edgell, P. (2010). Coastal fishes of the Pacific Northwest. Madeira Park, B.C: Harbour Pub.

Love, M. S. (2011). Certainly more than you want to know about the fishes of the Pacific Coast: A postmodern experience. Santa Barbara, Calif: Really Big Press.

New York Times, Feb. 25, 2022, The Pacific Spiny Lumpsucker Is Armed to the Teeth – The diminutive predator is a terrible swimmer but thrives in the intertidal zone thanks to odd evolutionary adaptation.

University of Washington – College of the Environment Feb. 8, 2022, , This tiny coastal fish wears a toothy coat of armor


The Creature Below the Floathouse?

How I enjoyed receiving the following mystery this week.

Be sure to have your sound on when you read and listen to the clip below.

Yes, it’s a male Pacific Harbour Seal! So many people do not realize that the male Harbour Seals establish and defend territory in the water (unlike species of sea lion and elephant seal who defend territory on land).

From Discovery of Sounds in the Sea . “Harbor seals were thought to be the least vocal of the pinnipeds. Recent studies have shown, however, that males produce underwater vocalizations during the mating season to attract females or to compete with other males. Males establish territories in the waters offshore of haul-out sites. Using underwater vocalizations, they defend their territories against other males and display to females traveling through the area. Their underwater vocalization is described as a roar with a peak frequency at approximately 1.2 kHz. Harbor seals also produce a wide variety of in-air vocalizations, including short barks, tonal honks, grunts, growls, roars, moans, and pup contact calls.”

It is remarkable isn’t it that these sounds were not known to be made by male Harbour Seals until ~1994.? This is the most common marine mammal on so many coasts and yet . . . we know so little.

Note: The person who sent me the mystery preferred to remain anonymous and that the location of the recordings not be provided. I can share that it was in the Sunshine Coast area of British Columbia. However, this underwater sound could be from ANYWHERE male Pacific or Atlantic Harbour Seals wish to pass on their genes. 🙂

See below for some of the research into Harbour Seal vocalizations.


From the research of Leanna Matthews:

“Similar to other aquatically mating pinnipeds, male harbor seals produce vocalizations during the breeding season that function in male-male interactions and possibly as an attractant for females. I investigated multiple aspects of these reproductive advertisement displays in a population of harbor seals in Glacier Bay National Park and Preserve, Alaska. First, I looked at vocal production as a function of environmental variables, including season, daylight, and tidal state. Vocalizations were highly seasonal and detection of these vocalizations peaked in June and July, which correspond with the estimated time of breeding. Vocalizations also varied with light, with the lowest probability of detection during the day and the highest probability of detection at night. The high probability of detection corresponded to when females are known to forage. These results are similar to the vocal behavior of previously studied populations.

However, unlike previously studied populations, the detection of harbor seal breeding vocalizations did not vary with tidal state. This is likely due to the location of the hydrophone, as it was not near the haul out and depth was therefore not significantly influenced by changes in tidal height.

I also investigated the source levels and call parameters of vocalizations, as well as call rate and territoriality. The average source level of harbor seal breeding vocalizations was 144 dB re 1 μPa at 1 m and measurements ranged from 129 to 149 dB re 1 μPa. Analysis of call parameters indicated that vocalizations of harbor seals in Glacier Bay were similar in duration to other populations, but were much lower in frequency.

During the breeding season, there were two discrete calling areas that likely represent two individual males; the average call rate in these display areas was approximately 1 call per minute.

The harbor seal breeding season also overlaps with peak tourism in Glacier Bay, and the majority of tourists visit the park on a motorized vessel. Because of this overlap, I investigated the impacts of vessel noise on the vocal behavior of individual males. In the presence of vessel noise, male harbor seals increase the amplitude of their vocalizations, decrease the duration, and increase the minimum frequency. These vocal shifts are similar to studies of noise impacts on other species across taxa, but it is unknown how this could impact the reproductive success of male harbor seals.

Finally, I looked at the role of female preference for male vocalizations. Using playbacks of male vocalizations to captive female harbor seals, I found that females have a higher response to vocalizations that correspond to dominant males. Females were less responsive to subordinate male vocalizations, which had a shorter duration and a higher frequency. Given that male harbor seals decrease the duration and increase the frequency of vocalizations in the presence of noise, it is possible that these vocalizations become less attractive in noise.


Click here for Harbour Seal vocal samples from Discovery of Sound in the Sea.

Sources:

Discovery of Sound in the Sea (DOSITS) – Harbor Seal Sounds (Phoca vitulina).

Hanggi, E. B., & Schusterman, R. J. (1994). Underwater acoustic displays and individual variation in male harbour seals, Phoca vitulina. Animal Behaviour, 48(6), 1275–1283. 

Matthews, Leanna. (2017). Harbor Seal (Phoca vitulina) Reproductive Advertisement Behavior And The Effects Of Vessel Noise. SURFACE.

Nicholson, T. E. (2000). Social structure and underwater behavior of harbor seals in southern Monterey Bay, California.

Sabinsky, P. F., Larsen, O. N., Wahlberg, M., & Tougaard, J. (January 01, 2017). Temporal and spatial variation in harbor seal (Phoca vitulina L.) roar calls from southern Scandinavia. The Journal of the Acoustical Society of America, 141, 3.)

Van, P. S. M., Corkeron, P. J., Harvey, J., Hayes, S. A., Mellinger, D. K., Rouget, P. A., Thompson, P. M., … Kovacs, K. M. (January 01, 2003). Patterns in the vocalizations of male harbor seals. The Journal of the Acoustical Society of America, 113, 6, 3403-10.

Get Back I Tell You!

Here’s a post about anemone enemies (say that 5 times).

See those really long tentacles extending from the Short Plumose Anemones in the following image? These are “catch tentacles” that can extend to be up to four times longer than the feeding tentacles.

Short Plumose Anemones reach around with these specialized, extendable tentacles and THEY ATTACK if they come in contact with a different species of anemone, or others of the same species who do not have the same DNA (are not their clones).

The tip of the specialized tentacle breaks off and kills the cells in the spot where they touch their anemone enemy. Apparently this can even kill the target anemone. Short Plumose Anemones on the outside of a group of related clones are more likely to use / develop these specialized tentacles.

Short Plumose Anemones AND Giant Plumose Anemones also have nematocysts (stinging cells in their feeding tentacles) AND they have acontia. See following image. These are defensive strands filled with stinging cells that are EJECTED from their mouths or through the anemones’ bodies when threatened or stressed. These threads extend far beyond the anemone and provide longer distance defence than the stinging cells.

None of the stinging cells of local anemone species impact we humans. But how I wish I had some acontia! Yes, I have defence envy. 🙂

From Invertebrates of the Salish Sea: ” Animals on the border of a clone often develop up to 19 “catch tentacles”, which generally occur close to the mouth.  These tentacles, which are larger and more opaque than the other tentacles, have special nematocysts and are unusually extensible (they can become up to 12 cm long or more).  They probe the area around the anemone.  While they do not respond to food, they DO fire when they contact either A. elegantissima [Aggregating Anemone] or another clone of M. senile.  When it fires, the tip of the tentacle breaks off and sticks to the victim, which may retract and bend away.  Tissue damage can generally later be seen in the stung area, and the attacked individual may even die.”

Image is of Giant Plumose Anemones = Metridium farcimen to 1 metre tall. Short Plumose Anemones are Metridium senile to only 30 cm tall and their crown is not as lobed. This photo is the image for this month’s WILD Calendar.

Photos taken in Kwakwaka’wakw Territory near Telegraph Cove, ©Jackie Hildering

Great White! Not what you think . . .

Great White!
Not quite what you were expecting?  

These are Great White Dorids. Yes, they are a species of nudibranch and the individuals featured here are mating, prowling for sponges AND succeeding in laying their astounding egg masses.

Mating Great White Dorids: Reproduction of nudibranch species is always right-side-to-right-side; attached by structures called “gonophores”. As reciprocal hermaphrodites, both parents become inseminated and lay eggs.

EACH dot you see in the egg masses (photos below) contains 8 to 12 fertilized eggs. They are laid by both parents because it makes a lot of sense to be a hermaphrodite when you are a sea slug and your eggs hatch into the sea. More fertilized eggs = more chances of some young surviving.

Even after so many years, I find the intricacy and diversity of sea slug egg masses something of jaw-dropping wonder. Not such a good thing when you are supposed to hold a regulator in your mouth while diving. 🙂

Scientific name of this species is Doris odhneri. They can be up to 20 cm long and their egg masses can be at least that size too.

Body design is classic for the sub-classification of nudibranchs that is “the dorids”. Those tufts on their hind ends are the gills and the projections on their heads (which all nudibranchs have) are the sensory rhinophores (rhino = nose). It’s how they smell their way around to find mates, food and whatever else is important in their world.

Notice in the next photo how dorid species are able to retract their gills when disturbed by the likes of an annoying underwater photographer.

Gills retracted.

Amazing too to think of the importance of smell in the sea isn’t it? Why is the individual in the following photo reared up like that? I believe it allows a better position to smell / detect the chemicals of food and/or a mate. Maybe they are even releasing pheromones? Note that is me musing. There is no research I know of to support this.

Same individual as in the first photo in this blog. I asked super sea slug expert, Dave Behrens, about this behaviour years ago and his response was: “I will agree the “rearing” is unusual in this group of dorids. Rearing is common amoung phanerobranch dorids (those that cannot withdraw their gill) . . . Although we will never know for sure, the behavior is thought to be a way for the slug to elevate itself above the substrate in search of chemical clues for its favorite prey.”

In featuring this species, the Great White Dorid, you see that not all nudibranch species are super colourful. But they are all super GREAT.


Species is also referenced as the GIANT White Dorid or Snow White Dorid, or White Dorid or White-Knight Nudibranch . . . etc. Known range is from southern Alaska to California but it’s a species I don’t see often where I dive around northeastern Vancouver Island. 

Another perspective on a Great White Dorids astonishing egg mass.
Prowling for sponges, a mate, or both. 🙂
Poor photo (because my camera housing had moisture in it that condensed in front of the lens) BUT this image shows a Great White Dorid laying an egg masss. It’s one of the times I caught a Great White Dorid in the act whereby I could know what the egg masses look like for this species (albeit that there are some closely related species of nudibranch that lay very similar looking egg masses).

All photos taken in Kwakwaka’wakw Territory, NE Vancouver Island ©Jackie Hildering.


Mask Squeezed and Lessons Learned

This is a personal post.

This is me 21 years ago, about a week after I got “mask squeeze” on my 37th birthday. I came across the photo recently when looking for a bio picture for a presentation. It was taken as a staff photo when I had the joy of teaching children with special needs.

I found myself staring at the photo, at younger me, and thinking of how much has been learned since then. I am sharing with you because . . . because why? Sure, there’s a lesson in physics here but that’s not it. There’s also maybe something of value in how the most important things in life sometimes don’t come easy. But more, it’s about what I have learned in these years, what I strive to put into the world, and why.

This image has an empty alt attribute; its file name is p1191546.jpeg

It won’t surprise you to know that you can’t be the same after you’ve been punched in the face by the Ocean. So here goes:

Mask squeeze happened on my twentieth dive when I did not know enough to realize how little I knew. It was my second birthday back in British Columbia after my many years of teaching in the Netherlands.

I was on a dive trip to some of the most challenging conditions on our coast. The accident happened during one of my first dives in a dry suit. I now know it was madness to be doing my first dives in a dry suit in such challenging conditions. But it was the result of some human chaos and unreliability whereby the suit was not ready when it was supposed to be. Thereby, I could not practice before the trip and get used to the change in buoyancy from my Dad’s old, thin wet suit.

On that 20th dive, when I rolled into the water off the boat, my fin slipped off my suit. My mask flooded. I did not realize I was holding my breath as I tried to grab the fin. I continued to descend whereby the pressure in my mask did not equalize. BOOM! The pressure of Mother Ocean pushed against my mask and blew out every capillary in my eyes.

From my dive log back then: “ Whatever it took, it was SO worth it. Astounding, astounding life. So grateful to my dive buddies who helped me and who decided the dive site should now be named Shiner Rock.” Yep, I have a little island unofficially named in my honour.

It was a powerful lesson in shaping me on this path . . . the vital importance of humility, respect, and knowing one’s place in the natural world.

Since then, I have metaphorically faced equivalent injuries, usually inflicted as a result of human ego and disconnect from understanding how our actions impact future generations.

The resulting process has been the same: learn, heal, surface, and repeat.

I will admit too that this photo makes me reflect on the few who say to me “You’re so lucky” or who have had the need to try to blow out my fire. I am so very lucky in many ways but, as much as I do not know the journeys of others, very few know my path. There have been difficult choices made and painful lessons learned. We’ve all had those.

I’ve written about having mask squeeze once before, after my 800th dive over seven years ago. There I reflected: “The Ocean is the source. The battle force. She is my inspiration. She is the beginning and she is the end. She is where I hide and where I am fully exposed. She has taught me my most valuable lessons and . . . . I know it’s not over yet. Not by a long shot.

I thank all who carry me forward – from my dive buddies to you who signal shared values and understanding. Please know how much direction you give.

Onward, fuelled by lessons learned and knowing what matters most. 💙


See this link for my previous blog about mask squeeze and lessons learned:
“My 800th Dive. From Shiner to Shining?” from January 2014.

Marine Murmuration – Pacific Herring

Rapturous. That’s a word I do not use easily, but it captures my feelings about today.

I saw the shimmering in the distance . . . Pacific Herring near the surface, scales reflecting the sunlight, the school mercurial, its members seemingly moving with a collective consciousness.

I hung back and tried to drink in the beauty. I knew my bubbles would disturb them and that I could therefore never capture the beauty in a photo.

But then . . . suddenly a river of flashing silver was streaming in my direction. Something had startled them on the opposite side of where I was. I held up the camera and repeatedly depressed the shutter release button while I lived the seconds of hundreds of herring bolting past. Then, they were in the distance again; a marine murmuration; the life’s blood of this ecosystem.

Cropped image.
 The school in the distance again, such beauty with flowing Bull Kelp and the sun streaming down.

Survival against so many odds. These little fish have survived against so many odds and so vital to so much life on our coast; not just in the Ocean but also to predators from sky and land.

Shorebirds, bears and wolves feed on the fertilized eggs. Hungry Humpbacks target giant mouthfuls to gain back weight lost in the breeding grounds. Bald Eagles deftly snatch talons’ full and then feed in the air. The Pacific Herring also feed the Chinook Salmon that sustain endangered Orca.

They have also fed human cultures and commercial fisheries and debate and demonstration.

May the feed precaution and reflection on what will sustain future generations.

Long live herring.

This image is from a previous chance to see Pacific Herring in the distance while diving – January 31, 2021, Telegraph Cove.

On the Radio . . .

I am so grateful for having been interviewed by Sheryl Mackay for CBC Radio’s North by Northwest and for how she captured the messaging for conservation.

This has led to a significant spike to my website and to social media channels which means . . . more reach of this work.

Welcome to all who have found their way here through their interest in, and love and concern for, the life-sustaining Ocean. 💙

 

Please click to hear the episode.


Social media links.