Join me in the cold, dark, life-sustaining NE Pacific Ocean to discover the great beauty, mystery and fragility hidden there.

Posts from the ‘Sea Stars’ category

Phenomenal Feather Stars

Phenomenal?  Yeah they are.

The lineage of “feather stars” (members of the crinoid class) goes back 485 million years, give or take a million. They crawl around. They swim in the most extraordinary way. You’ll see. ūüôā

Another non-scientific name used for feather stars is “sea lilies” but I avoid that. As pretty as the name is, I believe it adds to confusion. These are animals, not plants. They are echinoderms, relatives to sea stars, brittle stars, sea urchins and sea cucumbers. Also “sea lily” is a name more often used for the crinoid relatives that have a stalk into adulthood. Only juvenile feather stars have a stalk. Then, get this . . .¬† they detach and crawl down their own stalk to perch directly on the bottom! (Source: A Snail’s Odyssey). See below.

 

 

There are many feather star species in the world but the detail here is about the species commonly found in shallow water off the coast of British Columbia РFlorometra serratissima (range is from the Aleutian Islands to Baja California).

Feather stars have 5 feathery arms that split to form 10 or more arm branches that are used to gather bits of organic matter (snacks) out of the water. With arm’s outreached, Florometra serratissima is up to 25 cm wide and they are up to 31 cm tall. Feather stars also use their arms to swim as recently captured in this video by dive buddy, Brenda Irving. They swim as if “walking up an invisible staircase” (quote from Lamb and Handby).

Phenomenal – right?

The following detail on their locomotion is largely compiled from the brilliant resourceA Snail’s Odyssey by Tom Carefoot, Professor Emeritus, Department of Zoology, University of British Columbia.



How do they swim? 

“Florometra serratissima is the only swimming species of crinoid on the west coast of North America. It swims by graceful undulation of its arms in 3 sets, each set moving successively but overlapping. Thus, while about one-third of the arms are in power stroke, another third are in recovery, and the last third somewhere in between. During the power stroke the arms extend out maximally for greatest frictional resistance, while during the recovery stroke they bend inwards to minimise resistance.”

“The sets comprise two triplets and one quadruplet, are their composition with respect to specific arms is invariable (see sequence below). In the scenario shown, swimming is initiated by the blue triplet making a downstroke, followed 1sec later by the green quadruplet, and 2 seconds later by the orange triplet. An entire sequence is completed, then, in about 3 seconds, and the pattern may be repeated for up to 30 seconds.” (Source: A Snail’s Odyssey).

After several strokes to move vertically (to a mean height of 29 cm at an average speed of 5.4 cm/sec), individuals often turn 90 degrees and swim horizontally. If there is current, they will swim with the current. Horizontal swimming is achieved by the 5 arms furthest away from the bottom making stronger downward pulses than the arms closest to the bottom. (Source: Shaw and Fontaine. See Figure 3 at this link if you wish to better understand the horizontal movement).

Swim speed was found to occur in “short, repeatable bursts of 10 to 30 seconds. Continuous swimming beyond 4‚Äāminutes provokes a refractory period lasting 5 to 17‚Äāminutes during which individuals are incapable of swimming.” (Source: Shaw and Fontaine).

Feather stars end up back on the ocean bottom by stopping movement, and then “parachuting” down (as can be seen at the end of the video above).

Swimming and crawling can be stimulated by current and touch from predators such as Sunflower Stars (Pycnopodia helianthoides) and crabs. Research supports that if touched by a Sunflower Star, there is about a 5 second delay followed by “several power strokes carrying the stimulated individual 1 to 3 metres away.¬† This cycle can be repeated several times and capture by a sea star is actually thought to be rare.” (Source: A Snail’s Odyssey).

Particles of food are captured by the pinnules, moved by tube feet and cilia and form a bolus, which is moved down a “food grove” toward the mouth. This delicate looking animal has to be strong enough to be in high current areas as that’s where the feeding is good. The cirri hold on to surfaces and allow the Feather Star to crawl. ¬©2019 Jackie Hildering.


Yes, they also crawl! 

Crawling has been found to be feather stars’ main means of getting around with swimming being only in response to a predator or touch.

“Stalkless crinoids¬†such as¬†Florometra serratissima anchor to the substratum [ocean bottom] using flexible cirri [these have been described as holding on like bird’s feet do]. The cirri are jointed and can slowly bend and straighten. . . . ” (Source: A Snail’s Odyssey).

The arms are also involved in crawling around. The 10 arms attach to the bottom with small hooks, the central part of the feather star’s body (the calyx and cirri) is lifted. “The arms then contract and extend on opposite sides of the body, which moves it in one direction or the other. Repetition of this behaviour will gradually move the individual to a new location.” (Source: A Snail’s Odyssey)


What a remarkable species with relatives dating back 485 million years and defences including: (1) being able to regenerate arms; (2) having a body that has little nutritional content, is hard, and may taste bad AND; (3) is strong enough to withstand the current that delivers snacks, but light enough to allow swimming as an escape response.

 

Above: Feather star near Telegraph Cove at about 10 m depth. Species reported to be from 10 to 1252 m. Believe this to be a female! From A Snail’s Odyssey: “Studies on feather stars Florometra serratissima at Bamfield Marine Sciences Centre, British Columbia mostly have separate sexes, but a small percentage is hermaphroditic. Breeding is continuous throughout most of the year and ‚Äúdribble‚ÄĚ spawning is the norm. Gonads appear as swellings on special pinnules of the arms, known as genital pinnules. Genital pinnules occur on all 10 arms, but concentrate in the lower third of each arm. Male individuals can be recognised by the creamy white colour of their genital pinnules, and females by pink or orange-coloured pinnules.” More detail on reproduction of feather stars at this link. Photo ¬©2019 Jackie Hildering.

Above: This remarkable photo by Neil McDaniel shows an individual with eggs (orange) and allows you to see the incredible fine details of the “feathers” – the pinnules of Florometra serratissima.¬†

Above: Another fantastic capture by Neil McDaniel.  Florometra serratissima climbing down his/her stalk to live an an adult, moving around on its cirri and swimming.

Round Lipped Boot Sponge (1 m tall) near Powell River, festooned with feather stars (Florometra serratissima). Also, see the juvenile Giant Sea Cucumbers?

 

Feather stars at the same site as the individual in the video Рthe Knight Inlet Sill. Animals to the right are brachipods. ©2019 Jackie Hildering.

 

Above: Dive buddy, Brenda Irving, just before taking the video above. Here with the coral Primnoa pacifica which is usually found at great depth but the upwellings at this site in Knight Inlet lead to it occurring much shallower too, up to ~15 m. The animals on the coral in this image are Orange Hermit Crabs. Detail on this species of coral and this extraordinary site can be read at “A Proposal to Create a Marine Refuge at the Knight Inlet Sill, British Columbia to Protect Unique Gorgonian Coral Habitat” by Neil McDaniel. Click here.


Sources:

Sea Star Wasting Syndrome Now Documented on NE Vancouver Island

Giant pink sea star in final stages of sea star wasting syndrome. Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Giant pink sea star in final stages of sea star wasting syndrome. Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

[Update: November 18, 2014¬†Study published today – cause of Sea Star Wasting Syndrome a densovirus that has been present for at least 72 years? Why has it led to mass mortality now? What makes sense is that, like any virus, the incidents of “pathogenicity” depends on stressors (e.g. temperature change) and proximity of individuals. The virus has also been found in other echinoderms like urchins and sand dollars and it persists in sediment = can be transmitted by those vectors and there is the potential that the other echinoderms are/will be affected. See the study by Cornell University at the link below (lead author Ian Hewson). Includes “If SSaDV is the cause of the current SSWD event, it is unclear why the virus did not elicit wide disease outbreaks in the past during periods in which it was detected; however, there are several possible reasons why the current SSWD event is broader and more intense than previous occurrences. SSaDV may have been present at lower prevalence for decades and only became an epidemic recently due to unmeasured environmental factors not present in previous years that affect animal susceptibility or enhance transmission.”
http://www.pnas.org/content/early/2014/11/12/1416625111.abstract] 

Good coverage in a 7-minute radio interview
Science Friday; December 5, 2014: “What‚Äôs Killing West Coast Starfish?”¬†¬†http://www.sciencefriday.com/segment/12/05/2014/what-s-killing-west-coast-starfish.html#path/segment/12/05/2014/what-s-killing-west-coast-starfish.html


________________________________

Deepest of sighs.

I am very sad to report that Sea Star Wasting Syndrome is now on NE Vancouver Island.

I first detected symptoms of the Syndrome at Bear Cove in Port Hardy on December 13th. Please see table at the end of this blog for how the species affected appears to be quite different from further to the south. Leather stars seem particularly affected and the Syndrome appears to advance much more slowly.

Leather star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Leather star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

I have tried to think up a terrestrial analogy for what is happening to the sea stars so that non-divers might better get a sense of the weight and ecosystem importance of it. However, I can’t come up with a good terrestrial equivalent of an abundant group of highly visible, apex predators. My best attempt is to suggest you think of sea stars like birds of prey. Imagine what you would feel like if you were to notice they were dying, bodies deflating . . . then melting away and that this would progress very quickly and spread like wildfire.

Mottled star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Mottled star with sea star wasting syndrome. (Click to enlarge). Bear Cove, Port Hardy; December 21, 2013. © 2013 Jackie Hildering

Please see my previous blog item, “Wasted, What is Happening to the Sea Stars of the NE Pacific Ocean?”, for great detail on the symptoms, species impacted further to the south, spread of the Syndrome, and how to help understand what is happening¬†by relaying data to the Vancouver Aquarium.¬†

The short of it is:

  • The meltdown of sea stars was first detected in June 2013 in Washington State in ochre stars and in sunflower stars in Howe Sound (BC) in late August 2013 but has now been reported at sites from Alaska to the Mexican border.
  • Sunflower star in distress - potentially wasting syndrome. (Click to enlarge.) Photo from a week ago. Bear Cove, Port Hardy; December 13, 2013. ¬© 2013 Jackie Hildering

    Sunflower star in distress – potentially wasting syndrome. (Click to enlarge.) Photo from a week ago. Bear Cove, Port Hardy; December 13, 2013.
    © 2013 Jackie Hildering

    The number of sea stars impacted is orders of magnitude greater than any previous known outbreak.

  • Most likely due to a pathogen (virus and or/bacteria). Cornell University is doing the genomic work. Toxins and environmental conditions have not been ruled out as the cause (or compounding factors).
  • If it is a pathogen, how quickly it spreads is influenced by the number of animals and if they are stressed. There are likely to be layers of stressors.
  • It has put forward by the scientific community that this could be a normal mechanism for overpopulation in sea stars.

The 1-minute time-lapse video below shows the progression of the Syndrome in a sunflower star over 7 hours.

Yep, it’s terrible.

However, I believe very strongly that, in attempting to raise awareness about marine environmental issues, I must always reflect on “what you can do”. If I do not, I contribute to the spread of a devastating human syndrome: Eco-paralysis. Symptoms include people becoming despondent, overwhelmed, and underactive in undertaking positive socio-environmental change, and often saying “It’s all hopeless”. The cause? This I do know. Eco-paralysis is the result of not seeing the common solutions between environmental problems.

Sea Star Wasting Syndrome is a solid indicator of how little we know about our life-sustaining oceans. It emphasizes the importance of humility and precaution in decision-making around the environment and how we are all empowered to reduce environmental stressors (with emphasis on reducing fossil fuel consumption and chemical use).

Having witnessed what I have over the last many weeks, I am all the more driven to assist others in (1) falling deeper in love with the NE Pacific Ocean by revealing the beauty below her surface and (2) feeling the joy that comes from creating change that is better for the environment and, therefore, ourselves.

What was once a sunflower star. (Click to enlarge). Bear Cove, Port Hardy; December 23, 2013. © 2013 Jackie Hildering

What was once a sunflower star. (Click to enlarge). Bear Cove, Port Hardy; December 23, 2013.
© 2013 Jackie Hildering

The progression of the Syndrome in 2 days in a giant pink star. (Click to enlarge.)© 2013 Jackie Hildering

The progression of the Syndrome in 2 days in a giant pink star. (Click to enlarge.)© 2013 Jackie Hildering

Table showing progression of SSWS at Bear Cove

Table showing a summary of my data re. progression of species impacted at Bear Cove, Port Hardy. Progression of symptoms in a leather star over 16 days at Bear Cove, Port Hardy. (Click to enlarge.) © 2014 Jackie Hildering

Progression of symptoms in a leather star over 16 days at Bear Cove, Port Hardy. (Click to enlarge.)© 2014 Jackie Hildering

Progression of symptoms in a leather star over 16 days at Bear Cove, Port Hardy. (Click to enlarge.)© 2014 Jackie Hildering

Wasted. What is happening to the sea stars of the NE Pacific Ocean?

Last update: August 26, 2019

Sea Star Wasting Disease (SSWD) – summary of current state of knowledge

Since 2013, more than twenty species of sea star have been impacted by SSWD from Mexico to Alaska. There is local variation in intensity of the disease and which species are impacted. It is one of the largest wildlife die-off events in recorded history.

Currently, some species of sea star appear to be recovering while others remain heavily impacted (e.g. Sunflower Stars, Pycnopodia helianthoides).

Initial research suggested that Sea Star Wasting Syndrome was caused by a virus. The virus is reported to have been in the environment since 1942 (found in preserved sea stars) but that environmental stressors allow it to be more virulent.

However, subsequent work by Hewson et al found that the situation is much more complex and that the identified virus appears to cause SSWD only in Sunflower Stars.¬† What caused the concurrent impacts on other species of sea star is not yet understood. From the University of Santa Cruz’s page Sea Star Wasting Syndrome: “Current thinking is that there is likely a pathogen involved, but environmental factors may also play a role, and contributing factors might vary regionally.”

Regarding the status of Sunflower Stars: From Harvell et al¬† (January 2019),¬† “The common, predatory sunflower star (Pycnopodia helianthoides)¬† . . . has been extirpated across most of its range. Diver surveys . . .¬† reveal 80 to 100% declines across a ~3000-km range. Furthermore, timing of peak declines in nearshore waters coincided with anomalously warm sea surface temperatures. The rapid, widespread decline of this pivotal subtidal predator threatens its persistence and may have large ecosystem-level consequences.”¬†


Why share this information? It is often marine species that testify to environmental problems first, serving as indicators for the resources upon which we too depend. The hypothesis remains that the sea stars have succumbed in an unprecedented way because of changed ocean conditions (stressors). Too few of us realize the importance of sea stars in the ocean food web (see video below) let alone the importance of what they might be indicated about environmental health.


Where to relay sea star data  (of great value in understanding the survival, range, extent and potentially, contributing factors)  University of California Santa Cruz at  www.eeb.ucsc.edu/pacificrockyintertidal/data-products/sea-star-wasting/observation-log.html#track-disease 


Below, January 30, 2019 video by the Hakai Institute re. Sunflower Stars and Sea Star Wasting Disease.

 


Detail on research and observations in reverse chronological order:

January 30, 2019 – Paper published in Science Advances by Harvell et alDisease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Quote from lead author: “‚ÄúThe main takeaway is the speed with which a multi-host infectious disease can cause decline in the most susceptible host [Sunflower Stars] and that warming temperatures can field bigger impacts of disease outbreaks.” Abstract includes: “Since 2013, a sea star wasting disease has affected >20 sea star species from Mexico to Alaska. The common, predatory sunflower star (Pycnopodia helianthoides), shown to be highly susceptible to sea star wasting disease, has been extirpated across most of its range. Diver surveys conducted in shallow nearshore waters (n = 10,956; 2006‚Äď2017) from California to Alaska and deep offshore (55 to 1280 m) trawl surveys from California to Washington (n = 8968; 2004‚Äď2016) reveal 80 to 100% declines across a ~3000-km range. Furthermore, timing of peak declines in nearshore waters coincided with anomalously warm sea surface temperatures. The rapid, widespread decline of this pivotal subtidal predator threatens its persistence and may have large ecosystem-level consequences.”

The paper’s discussion includes: “Cascading effects of the¬†P. helianthoides¬†loss are expected across its range and will likely change the shallow water seascape in some locations and threaten biodiversity through the indirect loss of kelp.¬†P. helianthoides¬†was the highest biomass subtidal asteroid across most of its range before the Northeast Pacific SSWD event. Loss or absence of this major predator has already been associated with elevated densities of green (Strongylocentrotus droebachiensis), red (Mesocentrotus franciscanus), and purple urchins (Strongylocentrotus¬†purpuratus) across their range, even in regions with multiple urchin predators. Associated kelp reductions have been reported following the outbreak . . . SSWD, the anomalously warm water,¬†P. helianthoides¬†declines, and subsequent urchin explosions . . . have been described as the ‚Äúperfect storm.‚ÄĚ This ‚Äústorm‚ÄĚ could result not only in trophic cascades and reduced kelp beds but also in abalone and urchin starvation.”

July 2018 – Research published¬†by Burt et al) quantifies the importance of Sunflower Stars in maintaining kelp forests. Includes that the decline of Sunflower Stars¬† “corresponded to a 311% increase in medium urchins and a 30% decline in kelp densities”. See video below and news coverage on the research at this link.

March 7, 2018 – Additional research by Hewsen et al has found that, while a virus appears associated with the disease in Sunflower Stars, the situation is more complex and the virus does not appear to be the cause in other sea star species.¬† The cause is “likely a complex tango of diverse potential pathogens and environmental conditions” / “We speculate that SSWD may represent a syndrome of heterogeneous etiologies [causes] between geographic locations, between species, or even within a species between locations.” Those considered in the paper in addition to viruses: Drought / excessive rainfall; freshwater toxins (transmitted by excessive rainfall post drought); temperature swings.

This does not let climate change off the hook. Quote by lead author: ‚ÄúSince some of those disease causes may include swings in temperature or precipitation, ultimately which may be related to climate change, we need to focus our efforts on remediating climate change . . ‚ÄĚ
The paper suggests renaming the wasting disease to Asteroid Idiopathic Wasting Syndrome because the term correlates with an array of symptoms, ‚Äúwhich is more correct for describing this situation, as there are likely multiple diseases present . . .”

Causes / stressors considered in the paper:

  • Drought / excessive rainfall ” . . . SSWD mass mortality onset occurred concomitant with or immediately following drought conditions in both the Salish Sea region and in central California. Likewise, onset of SSWD mass mortality in Oregon (which occurred after both the former regions) occurred during a period of drought . . .Rainfall events at the end of drought conditions potentially bring large amounts of contaminants from terrestrial and freshwater habitats into contact with coastal marine habitats.”
  • Freshwater toxins: ” . . .our observations demonstrate that freshwater-derived toxins were present in asteroids during the wasting event and may represent an additional source of organism stress.”
  • Swings in temperature: ” . . . some proportion of wasting may be influenced by warm and cool water temperature anomalies, and that wasting in some species occurs consistently with season (notably¬†P. ochraceus [Ochre Star]¬†and¬†E. troscheli), our analysis could not identify a single or combination of parameters of environmental conditions that universally correspond with disease across multiple species or an entire geographic range.”

Green Urchins grazing on Split Kelp. ©Jackie Hildering.

Research published in June 2018¬†(Schiebelhut et al), specifically on Ochre Stars, found that the genetic makeup of the species has changed since the outbreak. Young Ochre Sea Stars are more similar genetically to adults who survived than to those who succumbed. This “may influence the resilience of this keystone species to future outbreaks”.¬†The findings of an additional March 2018 paper (Miner et al) include ”¬† . . . we documented higher recruitment of¬†P.¬†ochraceus¬†[Ochre Stars] in the north than in the south, and while some juveniles are surviving (as evidenced by transition of recruitment pulses to larger size classes), post-SSWD survivorship is lower than during pre-SSWD periods.

Documentation by Neil McDaniel showing what can happen in the absence of sea star predators of urchins. Site is Sakinaw Rock near Sechelt, British Columbia.

Sources for the above:

Background information:

  • Has been raging since June¬†2013.
  • Unprecedented in both range, duration and number of species impacted – 20 species of sea star species since 2013 from Alaska to Mexico (local variation in intensity of the disease and which species are impacted the worst). It is one of the largest wildlife die-off events in recorded history.
  • A virus had been found in sick sea stars but this virus has been around since at least 1942 (was isolated in preserved sea stars). A stressor (or stressors) must be reducing the resistance of the sea stars to the virus.Virus is “Sea Star associated Densovirus‚ÄĚ (SSaDV)¬†(Hewson, et al¬†¬†www.pnas.org/content/early/2014/11/12/1416625111.abstract ).
  • A correlation was found between increased temperature and death in sea stars but that other factors are likely play a role as well¬†(Eisenlord,¬†et al¬†¬†www.ncbi.nlm.nih.gov/pmc/articles/PMC4760142).
  • Another study found that the disease also progressed when temperatures have decreased. (Menge,¬†et al ¬†https://doi.org/10.1371/journal.pone.0157302)
  • Current situation: Varies by location and species of sea star. While there have been some “waves” of baby and juvenile sea stars, numbers of all species remain low and signs of wasting continue.
  • From my own observations on NE Vancouver Island: Here, Sunflower Stars are impacted the worst (the largest sea star in the NE Pacific Ocean with 20+ legs). Leather Stars may be more impacted than in other areas. Ochre Stars appear less impacted than in other areas. I have seen waves of Sunflower Star babies and juveniles. What I find most plausible is that the babies are the result of adults spawning at depth, where it is colder (reduced stressor). A stressor or stressors then reduces the resistance of the babies and juveniles in shallower water whereby they may succumb to SSWD.
  • In terms of ecosystem impacts, consider the important role of many sea stars as predators. I put forward that this can be likened to the death of many Sea Otters. With less sea stars there are more of their prey like mussels and clams. But, with less sea stars (especially Sunflower Stars), there are definitely more urchins which graze away more kelp. Thereby, there is less habitat for many species and a loss of biodiversity.
  • My album of photos of sea stars with symptoms can be found at this Facebook link.

Update November 2018
Lloyd, M, Pespeni, M (2018) Microbiome shifts with onset and progression of Sea Star Wasting Disease revealed through time course sampling. Scientific Reports.

Update October 2018
Schultz, Jessica; Sea star wasting ‚Äď update!. Coastal Ocean Research Institute (CORI) Oceanwatch – BC Edition

Update March 2018: Additional research referenced above:
Hewson I, Bistolas KSI, Quijano Cardé EM, Button JB, Foster PJ, Flanzenbaum JM, Kocian J and Lewis CK (2018) Investigating the Complex Association Between Viral Ecology, Environment, and Northeast Pacific Sea Star Wasting. Front. Mar. Sci. 5:77. doi: 10.3389/fmars.2018.00077.

Miner CM, Burnaford JL, Ambrose RF, Antrim L, Bohlmann H, Blanchette CA, et al. (2018) Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for recovery. PLoS ONE 13(3): e0192870. https://doi.org/10.1371/journal.pone.0192870

Update December 2017: Recent rash of astoundingly erroneous news articles suggesting that sea stars are all one “species” and that they are rebounding e.g.Starfish making comeback after syndrome killed millions

Update May 2016:¬†New paper –¬†Menge¬†BA, Cerny-Chipman¬†EB, Johnson¬†A, Sullivan¬†J, Gravem¬†S, et al. (2016) Correction: Sea Star Wasting Disease in the Keystone Predator Pisaster ochraceus in Oregon: Insights into Differential Population Impacts, Recovery, Predation Rate, and Temperature Effects from Long-Term Research. PLOS ONE 11(6): e0157302. https://doi.org/10.1371/journal.pone.0157302

Update February 2016: ¬†New paper – Eisenlord, et al¬†¬†: ” . . . reported that temperature plays a role in the prevalence of Sea Star Wasting Syndrome (SSWS). Analyses showed that risk of disease-associated death was correlated with sea star size as well as water temperature.¬†In adults, time between emergence of disease symptoms and death was influenced by temperature. Experiments also showed that adult mortality was higher in the warmer water treatments. Although adults showed disease symptoms more quickly than juveniles, diseased juveniles perished more quickly. This study was conducted in Washington State, where high mortality rates were experienced during 2014 in many areas, which coincided with warm temperature anomalies. While¬†this study explained some factors that lead to SSWS, their models indicate that other unknown factors are likely playing a role as well.” Source: ¬†SSWS updates University of California at Santa Cruz

Update October 2016:¬†¬†New paper –¬†Montecino-Latorre D, Eisenlord ME, Turner M, Yoshioka R, Harvell CD, Pattengill-Semmens CV, et al. (2016) Devastating Transboundary Impacts of Sea Star Wasting Disease on Subtidal Asteroids. PLoS ONE 11(10): e0163190. doi:10.1371/journal.pone.0163190¬†

Update April 2016:¬†Concern about decrease in sea stars leading to more urchins and, thereby, less kelp. CBC News; April 25, 2016¬†Scientists study ecological fallout of sea star die-off – Marine scientists are studying kelp to see how starfish wasting disease is changing the ecosystem. Study upon which this article is based:¬†Schultz JA, Cloutier RN, C√īt√© IM. (2016) Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia. PeerJ 4:e1980;¬†https://doi.org/10.7717/peerj.1980

Update February 2016:¬†¬†Cornell University study showing link between temperature and incidence of the Syndrome:¬†Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature, Reporting on the study includes this item on the front page of the Seattle times on February 21st:Scientists now link massive starfish die-off, warming ocean.”

Update January 21, 2016:¬†Province: “Sea star wasting disease among worst wildlife die-offs say scientists. Includes: “”This is, if not the, certainly one of the biggest wildlife die-offs that have ever been recorded, and we’re not just talking marine die-offs.”

Update May 3 , 2015: Seattle Times; “Starfish babies offer glimmer of hope amid mass die-off”. Includes: ” . . . a few baby starfish offered a glimmer of hope for the creature‚Äôs recovery . . . .‚Äúthe question is when these babies get big, will you expect them to die like the adults? . . . . Not all the sites have seen juveniles and it hasn‚Äôt been broad . . .One theory for why there are so many juveniles [at this site in Washington] is that when adult starfish were stressed from the wasting disease, they released millions of eggs and sperm, increasing the chances for fertilization. Ideal conditions in recent months have helped push those larvae to the shore, where they‚Äôre able to cling to hard surfaces such as rocks and pilings to grow . . .¬†And the worst of the wasting disease might still be ahead in some places, including along Washington‚Äôs Olympic Coast, where it was first reported in June 2013.”

Update April 9, 2015: California Рwasting symptoms being seen in urchins. http://news.nationalgeographic.com/2015/03/150401-urchins-sea-stars-monterey-bay-california-animals/

Sunflower star with sea star wasting syndrome. Photo - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Sunflower star with sea star wasting syndrome. Tissue wastes away. Legs often break off and crawl away briefly before rotting away. Photo – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

Update March 1, 2015: While symptoms of Sea Star Wasting Syndrome are still being seen in BC and I have seen no adult Sunflower Stars in the sites I have been monitoring on NE Vancouver Island, in several areas in BC, we are beginning to see juvenile Sunflower Stars. Sunflower Stars are the species that appeared to be most impacted in many areas of BC. Where are the young Sunflower Stars coming from? It may be, and this is my speculation, that there are Sunflower Stars at depth that survived the Syndrome possibly because they were not exposed to the same stressors e.g. the water at depth may be colder. 

Update November 18, 2014:¬†¬†Study published today – cause of Sea Star Wasting Syndrome a densovirus that has been present for at least 72 years? Why has it led to mass mortality now? What makes sense is that, like any virus, the incidents of “pathogenicity” depends on¬†stressors (e.g. temperature change) and proximity of individuals. The virus has also been found in other echinoderms like urchins and sand dollars and it persists in sediment = can be transmitted by those vectors and there is the potential that the other echinoderms are/will be affected.¬†See the study by Cornell University at the link below (lead author Ian Hewson). Includes “If SSaDV is the cause of the current SSWD event, it is unclear why the virus did not elicit wide disease outbreaks in the past during periods in which it was detected; however, there are several possible reasons why the current SSWD event is broader and more intense than previous occurrences. SSaDV may have been present at lower prevalence for decades and only became an epidemic recently due to unmeasured environmental factors not present in previous years that affect animal susceptibility or enhance transmission.”
http://www.pnas.org/content/early/2014/11/12/1416625111.abstract

Update December 2014: Seeing juvenile Sunflower Stars around Northern Vancouver Island. The hope is that there might be a deep, cold water reservoir of animals.  I suggest that this offers further support that increased temperature may be the stressor that has increased the pathogenicity of the virus.

Good coverage in a 7-minute radio interview
Science Friday; December 5, 2014: “What‚Äôs Killing West Coast Starfish?”¬†¬†http://www.sciencefriday.com/segment/12/05/2014/what-s-killing-west-coast-starfish.html#path/segment/12/05/2014/what-s-killing-west-coast-starfish.html¬†]¬†

___________________________________________

Original blog November 10, 2013:

There has already been much reporting on the gruesome epidemic spreading like wildfire through several species of sea star in the NE Pacific Ocean.

“Sea star wasting syndrome” is incredibly virulent and is causing the mass mortality of some sea star species in British Columbia and beyond. “Sea stars go from “appearing normal” to becoming a pile of white bacteria and scattered skeletal bits is only a matter of a couple of weeks, possibly less than that” (Source #1).

Rotting pile of sunflower stars. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Rotting pile of sunflower stars. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

What I have strived to do is bundle the state of knowledge so far, relying heavily on the expertise of two extraordinary divers and marine naturalists: (1) Neil McDaniel, marine zoologist and underwater photographer / videographer who maintains a website on local sea stars and has put together A Field Guide to Sea Stars of the Pacific Northwest, and (2) Andy Lamb, whose books include Marine Life of the Pacific Northwest.

I am hoping that kayakers, beach-walkers and fellow divers will help monitor and report on the spread of the disease via this link on the Vancouver Aquarium webpage but I am also hoping that all of us may learn from this tragedy that has impacted “one of the most¬†iconic animals on the coast of British Columbia . . . more abundant and diverse in our waters than anywhere else in the world” (Source #3).

Sea star wasting syndrome reminds us of the fragility of ocean ecosystems; how very quickly disease could spread in the ocean; and how we are all empowered to reduce stressors that increase the likelihood of pathogens manifesting as disease or even that pathogens enter the environment (e.g. sewage).

Update January 18, 2014 –¬†Video by Neil McDaniel showing the extent of the mortality in some parts of southern British Columbia.¬†¬†Click here.¬†

Species impacted?¬†(Update November 30th –¬†Source #14)

High mortalities (note that the first 4 are members of the same family Рthe Asteriidae):

  1. Sunflower star (Pycnopodia helianthoides)¬†hardest hit in southern British Columbia. From communication with Neil McDaniel ” . . .so far I estimate it has killed tens, possibly hundreds of thousands of Pycnopodia in British Columbia waters.”
  2. Mottled star (Evasterias troschelii) 
  3. Giant pink star (Pisaster brevispinus)
  4. Ochre star aka purple star (Pisaster ochraceus)
  5. Morning sun star (Solaster dawsoni)

More limited mortalities:

  1. Vermillion star (Mediaster aequalis); video of an afflicted star here.
  2. Rainbow star (Orthasterias koehleri)
  3. Leather star (Dermasterias imbricata)
  4. Striped sun star (Solaster stimpsoni)
  5. Six-rayed stars (Leptasterias sp.)

Update January 21st, 2014:¬†Possibly: Rose star (Crossaster papposus) –¬†I have noted symptoms in this species on NE Vancouver Island as has Neil McDaniel in S. British Columbia).

Update November 20th: The Vancouver Aquarium reports on which sea stars are and are not affected in S. British Columbia: “The majority of those species affected by the sunflower star epidemic are members of the same sea star family” and that the closely related morning sun star and giant pink star appear to get infected after feeding these “meals”. ¬†(Source #10, includes video).

Symptoms and progression of the syndrome:

Neil McDaniel shared the following 7 images for the progression of the disease in sunflower stars [Source #2 and #14]. See the end of this blog item for images showing symptoms in other sea star species as well as a 1 minute time-lapse clip showing the progression of the syndrome in a sunflower star over 7 hours. [Note that the progression of the Syndrome on NE Vancouver Island appears that it may be different from what has been observed further to the south.]

1. In this image most of the sunflower stars appear healthy “other than one just right of center frame is exhibiting the syndrome, looking ‚Äúthinned-out‚ÄĚ and emaciated.”

Click to enlarge. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Click to enlarge. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

2. This images “shows this thinning in close-up. Note how distinct the edges of the rays look and how flat the star is.”

Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Click to enlarge. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

3. This image “shows how the body wall begins to rupture, allowing the gonads and pyloric caeca to spill out.”¬†

As the animals become more stressed, they often drop several rays (which wander off on their own for a while). At this point the body wall becomes compromised and the pyloric caeca and/or gonads may protrude through lesions. As things progress, the animals lose the ability to crawl and may even tumble down steep slopes and end up in pile at the bottom. Soon after they die and begin to rot
Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

4. This image “shows the gonads breaking through holes in the body wall. At this point rays often break off and crawl away briefly.”

Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

5. As things progress, the animals lose the ability to crawl [and hold grip surfaces] and may even tumble down steep slopes and end up in pile at the bottom. Soon after they die and begin to rot.

Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

6. The bacteria Beggiatoa then takes over and consumes all of the organic matter, leaving a scattering of skeletal plates on the bottom. The syndrome develops quickly and in only one to two weeks animals can go from appearing healthy to a white mat of bacteria and skeletal plates

Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

7. This image “shows an individual star that is being consumed by mat bacteria.”

Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info

Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info

The 1-minute time-lapse video below shows the progression of the Syndrome in a sunflower star over 7 hours.

Cause(s)?
To date (January 2014), the cause (s) have not yet been identified. Scientific opinion appears to be that most likely the cause is one or more viruses or bacteria that have not yet been identified (more advanced investigations like DNA sequencing and metagenomics are now underway at Cornell University – Source #18 and #19) but toxins and environmental factors have not been ruled out as the primary cause or confounding causes (Source #18). As with any pathogen (like the flu virus), the expression of a pathogen as disease is influenced by number and proximity of individuals and could be exacerbated by environmental stressors. It is NOT radiation [Source #18, #19 and others].

Using cutting-edge DNA sequencing and metagenomics, Hewson is analyzing the samples for viruses as well as bacteria and other protozoa in order to pinpoint the infectious agent among countless possibilities.

‚ÄúIt‚Äôs like the matrix,‚ÄĚ Hewson said. ‚ÄúWe have to be very careful that we‚Äôre not identifying something that‚Äôs associated with the disease but not the cause.‚ÄĚ

    • ‚ÄĚIn previous outbreaks the “proximal cause” was found to a vibrio bacterium but “a recent wasting event on the east coast of the United States has been attributed to a virus ¬†. . . such events are often associated with warmer than typical water temperatures . . . Please note that we do not know what is causing Sea Star Wasting Syndrome, and the cause may be different in different regions ¬†. . . ¬†the period prior to Wasting was characterized by warm water temperatures” (University of California Santa Cruz, Source #4).
    • Bates et al¬†reported on an outbreak of wasting syndrome in ochre stars in Barkley sound in 2008. This included conducting lab experiments finding that the “prevalence and infection intensity were always higher in warm temperature treatments” and¬†that “small increases in temperature could drive mass mortalities of Pisaster [ochre stars] due to wasting disease.” [Source #13 and #14]
    • “Do not believe this is related to a warming trend” (Source #18).
    • “Overpopulation” of sunflower stars appears to be a factor with outbreaks occurring where there is a high abundance of sea stars.¬†‚ÄúOften when you have a population explosion of any species you end up with a disease outbreak” (Source #5). “This could be perfectly normal as a way to control overpopulation”¬†(Source #18).
    • “Some initial samples sent to DFO [Department of Fisheries and Oceans] and UBC [University of British Columbia] have not isolated a specific causative agent for this sea star die off. More samples are being collected and additional tests will be conducted” (Source #2 and #7). Viruses are notoriously difficult to detect. Cornell University (New York) has begun viral and bacterial culturing (Source #8). Updates will be provided here as they become available. See Source #14 for the results of pathology reports from October 4, November 12 and November 13.
    • Quote from¬†Drew Harvell, a Cornell University professor of ecology and evolutionary biology who studies marine diseases:¬†‚Äúthese kinds of events are sentinels of change. When you get an event like this, I think everybody will say it‚Äôs an extreme event and it‚Äôs pretty important to figure out what‚Äôs going on . . . Not knowing is scary . . . If a similar thing were happening to humans, the Centers for Disease Control and Prevention would commit an army of doctors and scientists to unraveling the mystery.”¬†(Source #12)
    • Fukushima is a contributing factor?! There is no data to date to support this and, while of course radiation benefits nothing, I worry that pointing the finger away from ourselves takes away from the opportunity to recognize and act on how we all contribute to ocean stressors such as increasing temperature. From Source #19 – “scientists see Fukushima as an unlikely culprit because the die-offs are patchy, popping up in certain places like Seattle and Santa Barbara and not in others, such as coastal Oregon, where wasting has only been reported at one location.”
    • Ballast water? “From Source #19- “Others have wondered if a pathogen from the other side of the world may have hitched a ride in the ballast water of ocean-going ships. Scientists say this fits with the fact that many of the hot spots have appeared along major shipping routes. However, the starfish in quiet Monterey Bay, Calif. have been hit hard, whereas San Francisco‚Äôs starfish are holding strong.”

Range and timeline?

  • [Update December 21, 2013 –¬†The Syndrome has been documented in sites from Alaska to the Mexican border – with gaps in knowledge especially off central and northern BC. See data acquired through the University of California, Santa Cruz on this map¬†(Source #4) and the data acquired through the Vancouver Aquarium on this map (Source #3).]
  • June 2013 – First noted in the intertidal zone in ochre stars along the Washington Coast. “As of ¬†December, signs of wasting had been observed at 45 of 84 MARINe sites [USA – Multi-Agency Rocky Intertidal Network] sampled since¬†summer 2013, spanning the entire coast from Alaska to San Diego but varying in¬†intensity from low levels of infection to mass mortality” [and with large gaps in data especially in northern British Columbia].¬†(Source #17). See map¬†(Source #4)¬†documenting the Syndrome¬†in ochre stars in some locations from Alaska to the Mexican Border.
  • Late August 2013 – first reported in the sub-tidal in Howe Sound (Whytecliff and Kelvin Grove) by recreational diver Jonathan Martin (his photos¬†here; video¬†here). Sunflower stars were the main species impacted.
  • Mass mortality noted in Indian Arm in early October. “By late October the syndrome had been reported from the Gulf Islands, around Nanaimo and into Puget Sound and the San Juan Islands. It appears to be spreading throughout the entire Strait of Georgia and Puget Sound.” [Source #14].
  • First detected in the sub-tidal in sunflower stars in Washington State as of late October (Source #11 and #17). See a video here of a site in West Seattle before and after the outbreak.¬†Update December 22nd: First reported off Whidbey Island, Washington.
  • Update December 21st: I am very sad to report that I have now found afflicted animals on NE Vancouver Island (Bear Cove, Port Hardy). Please see my blog at this link for photos, details and updates on the progression of the Syndrome on NE Vancouver Island].
  • Update January 19th, 2014:¬†Morning sunstar with symptoms found in Campbell River [Reported by Dylan Smith].
  • No outbreaks on the west coast of Vancouver Island [Source #14].
  • “A smaller and isolated Atlantic outbreak, at points off Rhode Island and Maine, has also been noted.” (Source #12).
  • With regard to finding sunflower stars with the syndrome in Sechelt Inlet “This sighting is both disturbing and perplexing for a couple of reasons. First, Sechelt Inlet is hydrographically quite isolated from the rest of the Strait of Georgia, being a nearly land-locked fjord with minimal water exchange through Sechelt Rapids. Secondly [in Sechelt Inlet]¬†Pycnopodia¬†is a common sea star, but by no means abundant and certainly not found in anything near the incredible densities (up to 11/square metre) that we have encountered at the Defence Islands in Howe Sound” (Source #1). Jeff Marliave (VP of Marine Sciences at the Vancouver Aquarium) relates that the epicentre of the outbreak in Sechelt Inlet appears to be Egmont and that this correlates with a high abundance of sunflower stars there (Source #8).
  • Baby sea stars now seem to be coming back to areas where adult sunflower stars have been wiped out (Source #18).
  • You can aid understanding of the range and spread by inputting your data at¬†this link on the Vancouver Aquarium webpage.

Has this happened before?
Never to this large a scale. “Although similar sea star wasting events have occurred previously, a¬†mortality event of this magnitude, with such broad geographic reach has never before¬†been documented.” (Source #17).

  • “Southern California in 1983-1984 and again (on a lesser scale) in 1997-98” (Source #4 and #13)
  • Florida (Source #5).
  • Update November 30:¬†Sunflower die offs [on much smaller scale] have been noted in the past in Barkley Sound. In 2008 ochre star die offs were documented in Barkley Sound. In 2009 Bates et. al. reported on this and observed that the prevalence of disease “was highly temperature sensitive and that populations in sheltered bays appeared to sustain chronic, low levels of infection.” (Source #14 and #15).
  • “Similar events have occurred elsewhere over the last 30 years. Sea stars have perished in alarming numbers in Mexico, California and other localities” (Source #2).
  • “In July, researchers at the University of Rhode Island reported that sea stars were dying in a similar way from New Jersey to Maine . ¬†.¬†a graduate student collected starfish for a research project and then watched as they ‚Äúappeared to melt‚ÄĚ in her tank” (Source #5).

Ecosystem impact?

The impacted sea star species are carnivores, feeding high up in the food chain. This massive die off may lead to shifts / changes in marine ecosystems since there will be less predation by the affected sea star species (Source #9 and #12). Their prey includes: bivalves like mussels, marine snails, urchins and sea cucumbers.

    • “Once that disease is in the environment, it can be difficult to get the population [of the affected sea stars] back” (Source #5).
    • Ecologists consider sunflower and ochre stars to be keystone species because they have a disproportionately large influence on the distribution and abundance of many other species. Scientists anticipate that such a large mortality event in keystone species could change the intertidal and sub tidal seascapes . . . Previous examples of large-scale, mass mortality of individual marine species have resulted in dramatic ecosystem-wide changes” (Source #17).
    • “Sea stars are voracious predators, like lions on the seafloor. They gobble up mussels, clams, sea cucumbers, crab and even other starfish. That‚Äôs why they‚Äôre called a keystone species,¬†meaning they have a disproportionate impact on an ecosystem, shaping the biodiversity of the seascape.¬†‚ÄúThese are ecologically important species,‚ÄĚ ¬†. . . ‚ÄúTo remove them changes the entire dynamics of the marine ecosystem. When you lose this many sea stars it will certainly change the seascape underneath our waters.” (Source #19)
    • Seeing baby sunflower stars back where adults have been wiped out in Howe Sound. Getting species like agarum kelp back (good habitat that was suppressed due to previous abundance of sea stars) but also seeing green urchins come back (will graze on kelp like sea stars do). (Source #18).

Video (7 min) on the state of knowledge on the Syndrome (January 2014) and showing the progression of the Syndrome in sunflower stars around Washington / Southern BC.

Sources:

  1. Email communication with Neil McDaniel.
  2. Email communication with Andy Lamb.
  3. http://www.vanaqua.org/act/research/sea-stars
  4. http://www.eeb.ucsc.edu/pacificrockyintertidal/data-products/sea-star-wasting/
  5. http://commonsensecanadian.ca/alarming-sea-star-die-off-west-coast/
  6. http://www.businessinsider.com/disease-ravaging-west-coast-starfish-2013-11
  7. Shellfish Health Report from the Pacific Biological Station (DFO) conducted on 1 morning sun star and 7 sunflower stars collected on October 9, 2013 at Croker Island, Indian Arm; case number 8361.
  8. Email communication with Jeff Marliave.
  9. http://www.reef2rainforest.com/2013/11/09/disaster-deja-vu-all-over-again/
  10. http://www.aquablog.ca/2013/11/family-relations-in-starfish-wasting-syndrome/ 
  11. http://www.komonews.com/news/eco/Whats-causing-our-sea-stars-to-waste-away–231982671.html
  12. http://www.washingtonpost.com/national/health-science/sea-stars-are-wasting-away-in-larger-numbers-on-a-wider-scale-in-two-oceans/2013/11/22/05652194-4be1-11e3-be6b-d3d28122e6d4_story.html
  13. https://science.nature.nps.gov/im/units/medn/symposia/5th%20California%20Islands%20Symposium%20(1999)/Marine%20Ecology/Eckert_Sea_Star_Disease_Population_Decline.pdf
  14. Sea star wasting syndrome, Nov 30-13; https://jackiehildering.files.wordpress.com/2013/11/sea-star-wasting-syndrome-nov-30-13.pdf 
  15. Bates AE, Hilton BJ, Harley, CDG 2009. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Diseases of Aquatic Organisms Vol. 86:245-251 http://www.ncbi.nlm.nih.gov/pubmed/20066959
  16. Video showing impacts in Elliott Bay, Seattle http://earthfix.info/flora-and-fauna/article/sea-stars-dying-off-west-seattle/
  17. University of California, Santa Cruz Press Release; December 22, 2013; Unprecedented Sea Star Mass Mortality Along the West Coast of North America due to Wasting Syndrome
  18. Vancouver Aquarium; January 21, 2014; Presentation РMass Dying of Seastars in Howe Sound and Vancouver Harbour (Dr. Jeff Marliave and Dr. Marty Haulena).
  19. Earth Fix; January 30, 2014; Northwests starfish experiment gives scientists clues to mysterious mass die-offs 

Images showing symptoms in other sea star species:

Ochre star (aka purple star) with sea star wasting syndrome. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Ochre star (aka purple star) with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Mottled star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Morning sun star with lesions indicating the onset of sea star wasting syndrome. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Morning sun star with lesions indicating the onset of sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

Giant pink star with sea star wasting syndrome. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

Giant pink star with sea star wasting syndrome. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.

What was once a giant pink star. Photo and descriptor - Neil McDaniel; www.seastarsofthepacificnorthwest.info Click to enlarge.

What was once a giant pink star. Photo and descriptor – Neil McDaniel; http://www.seastarsofthepacificnorthwest.info
Click to enlarge.